These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15979900)

  • 1. The C50m response: conditioned magnetocerebral activity recorded from the human brain.
    Moses SN; Martin T; Houck JM; Ilmoniemi RJ; Tesche CD
    Neuroimage; 2005 Oct; 27(4):778-88. PubMed ID: 15979900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic neural activity recorded from human amygdala during fear conditioning using magnetoencephalography.
    Moses SN; Houck JM; Martin T; Hanlon FM; Ryan JD; Thoma RJ; Weisend MP; Jackson EM; Pekkonen E; Tesche CD
    Brain Res Bull; 2007 Mar; 71(5):452-60. PubMed ID: 17259013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning related activation of somatosensory cortex by an auditory stimulus recorded with magnetoencephalography.
    Moses SN; Bardouille T; Brown TM; Ross B; McIntosh AR
    Neuroimage; 2010 Oct; 53(1):275-82. PubMed ID: 20541017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term consolidation and retention of learning-induced tuning plasticity in the auditory cortex of the guinea pig.
    Galván VV; Weinberger NM
    Neurobiol Learn Mem; 2002 Jan; 77(1):78-108. PubMed ID: 11749087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic effects of blocking tone conditioning on the rat auditory system.
    Poremba A; Jones D; Gonzalez-Lima F
    Neurobiol Learn Mem; 1997 Sep; 68(2):154-71. PubMed ID: 9322258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning pain-related fear: neural mechanisms mediating rapid differential conditioning, extinction and reinstatement processes in human visceral pain.
    Gramsch C; Kattoor J; Icenhour A; Forsting M; Schedlowski M; Gizewski ER; Elsenbruch S
    Neurobiol Learn Mem; 2014 Dec; 116():36-45. PubMed ID: 25128878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity profiles of single neurons in caudal anterior cingulate cortex during trace eyeblink conditioning in the rabbit.
    Weible AP; Weiss C; Disterhoft JF
    J Neurophysiol; 2003 Aug; 90(2):599-612. PubMed ID: 12750412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooling of the cerebellar interpositus nucleus abolishes somatosensory cortical learning-related activity in eyeblink conditioned rabbits.
    Wikgren J; Lavond DG; Ruusuvirta T; Korhonen T
    Behav Brain Res; 2006 Jun; 170(1):94-8. PubMed ID: 16580077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affect-specific modulation of the N1m to shock-conditioned tones: magnetoencephalographic correlates.
    Bröckelmann AK; Steinberg C; Dobel C; Elling L; Zwanzger P; Pantev C; Junghöfer M
    Eur J Neurosci; 2013 Jan; 37(2):303-15. PubMed ID: 23167712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term plasticity in the auditory system: differential neural responses to perception and imagery of speech and music.
    Meyer M; Elmer S; Baumann S; Jancke L
    Restor Neurol Neurosci; 2007; 25(3-4):411-31. PubMed ID: 17943016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel neural responses in amygdala subregions and sensory cortex during implicit fear conditioning.
    Morris JS; Buchel C; Dolan RJ
    Neuroimage; 2001 Jun; 13(6 Pt 1):1044-52. PubMed ID: 11352610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex.
    Ma X; Suga N
    J Neurophysiol; 2003 Jan; 89(1):90-103. PubMed ID: 12522162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unilateral cortical spreading depression and conditioned eye blink responses in rabbits.
    Megirian D
    Acta Neurobiol Exp (Wars); 1973; 33(4):699-710. PubMed ID: 4781919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fear potentiated startle at short intervals following conditioned stimulus onset during delay but not trace conditioning.
    Asli O; Kulvedrøsten S; Solbakken LE; Flaten MA
    Psychophysiology; 2009 Jul; 46(4):880-8. PubMed ID: 19386051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: II. Secondary field (AII).
    Diamond DM; Weinberger NM
    Behav Neurosci; 1984 Apr; 98(2):189-210. PubMed ID: 6721922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Not what you expect: experience but not expectancy predicts conditioned responses in human visual and supplementary cortex.
    Moratti S; Keil A
    Cereb Cortex; 2009 Dec; 19(12):2803-9. PubMed ID: 19304914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Priority of repetitive adaptation to mismatch response following undiscriminable auditory stimulation: a magnetoencephalographic study.
    Hoshiyama M; Okamoto H; Kakigi R
    Eur J Neurosci; 2007 Feb; 25(3):854-62. PubMed ID: 17328780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cellular mechanisms of conditioned reflex integration].
    Rabinovich MIa
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1977; 27(4):699-708. PubMed ID: 200030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin, structure, and role of background EEG activity. Part 3. Neural frame classification.
    Freeman WJ
    Clin Neurophysiol; 2005 May; 116(5):1118-29. PubMed ID: 15826853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fear but not awareness predicts enhanced sensory processing in fear conditioning.
    Moratti S; Keil A; Miller GA
    Psychophysiology; 2006 Mar; 43(2):216-26. PubMed ID: 16712592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.