BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15980018)

  • 1. Computational modeling of type I collagen fibers to determine the extracellular matrix structure of connective tissues.
    Israelowitz M; Rizvi SW; Kramer J; von Schroeder HP
    Protein Eng Des Sel; 2005 Jul; 18(7):329-35. PubMed ID: 15980018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen.
    Silver FH; Landis WJ
    Connect Tissue Res; 2011 Jun; 52(3):242-54. PubMed ID: 21405976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterotrimeric type I collagen C-telopeptide conformation as docked to its helix receptor.
    Malone JP; Veis A
    Biochemistry; 2004 Dec; 43(49):15358-66. PubMed ID: 15581348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of intermolecular interactions of self-etch dentin adhesive primer molecules with type 1 collagen: computer modeling and in vitro binding analysis.
    Vaidyanathan J; Vaidyanathan TK; Kerrigan JE
    Acta Biomater; 2007 Sep; 3(5):705-14. PubMed ID: 17412657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibril microstructure affects strain transmission within collagen extracellular matrices.
    Roeder BA; Kokini K; Voytik-Harbin SL
    J Biomech Eng; 2009 Mar; 131(3):031004. PubMed ID: 19154063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular matrix, supramolecular organisation and shape.
    Scott JE
    J Anat; 1995 Oct; 187 ( Pt 2)(Pt 2):259-69. PubMed ID: 7591990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled heterotrimeric collagen triple helices directed through electrostatic interactions.
    Gauba V; Hartgerink JD
    J Am Chem Soc; 2007 Mar; 129(9):2683-90. PubMed ID: 17295489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical implications of the domain structure of fiber-forming collagens: comparison of the molecular and fibrillar flexibilities of the alpha1-chains found in types I-III collagen.
    Silver FH; Horvath I; Foran DJ
    J Theor Biol; 2002 May; 216(2):243-54. PubMed ID: 12079374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and stability of short beta-peptide nanotubes: a non-natural representative of collagen?
    Czajlik A; Beke T; Bottoni A; Perczel A
    J Phys Chem B; 2008 Jul; 112(26):7956-66. PubMed ID: 18543867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates.
    Aouacheria A; Geourjon C; Aghajari N; Navratil V; Deléage G; Lethias C; Exposito JY
    Mol Biol Evol; 2006 Dec; 23(12):2288-302. PubMed ID: 16945979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position of single amino acid substitutions in the collagen triple helix determines their effect on structure of collagen fibrils.
    Steplewski A; Ito H; Rucker E; Brittingham RJ; Alabyeva T; Gandhi M; Ko FK; Birk DE; Jimenez SA; Fertala A
    J Struct Biol; 2004 Dec; 148(3):326-37. PubMed ID: 15522781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How stable is a collagen triple helix? An ab initio study on various collagen and beta-sheet forming sequences.
    Pálfi VK; Perczel A
    J Comput Chem; 2008 Jul; 29(9):1374-86. PubMed ID: 18196503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen type II is recognized by a pathogenic antibody through germline encoded structures.
    Böiers U; Lanig H; Sehnert B; Holmdahl R; Burkhardt H
    Eur J Immunol; 2008 Oct; 38(10):2784-95. PubMed ID: 18825755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes in human type I collagen fibrils investigated by force spectroscopy.
    Graham JS; Vomund AN; Phillips CL; Grandbois M
    Exp Cell Res; 2004 Oct; 299(2):335-42. PubMed ID: 15350533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular assessment of the elastic properties of collagen-like homotrimer sequences.
    Vesentini S; Fitié CF; Montevecchi FM; Redaelli A
    Biomech Model Mechanobiol; 2005 Jun; 3(4):224-34. PubMed ID: 15824897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and utilization of a bovine type I collagen microfibril model.
    Brown EM
    Int J Biol Macromol; 2013 Feb; 53():20-5. PubMed ID: 23131209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructed corneas: effect of three-dimensional culture, epithelium, and tetracycline hydrochloride on newly synthesized extracellular matrix.
    Builles N; Justin V; André V; Burillon C; Damour O
    Cornea; 2007 Dec; 26(10):1239-48. PubMed ID: 18043183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of orientations of collagen fibers by novel fiber-tracking software.
    Wu J; Rajwa B; Filmer DL; Hoffmann CM; Yuan B; Chiang CS; Sturgis J; Robinson JP
    Microsc Microanal; 2003 Dec; 9(6):574-80. PubMed ID: 14750992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.