BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 15980182)

  • 1. Light-scattering studies of protein solutions: role of hydration in weak protein-protein interactions.
    Paliwal A; Asthagiri D; Abras D; Lenhoff AM; Paulaitis ME
    Biophys J; 2005 Sep; 89(3):1564-73. PubMed ID: 15980182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A consistent experimental and modeling approach to light-scattering studies of protein-protein interactions in solution.
    Asthagiri D; Paliwal A; Abras D; Lenhoff AM; Paulaitis ME
    Biophys J; 2005 May; 88(5):3300-9. PubMed ID: 15792969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen.
    Velev OD; Kaler EW; Lenhoff AM
    Biophys J; 1998 Dec; 75(6):2682-97. PubMed ID: 9826592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of weak protein-protein interactions: the pH dependence of the second virial coefficient.
    Elcock AH; McCammon JA
    Biophys J; 2001 Feb; 80(2):613-25. PubMed ID: 11159430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mesoscopic model for protein-protein interactions in solution.
    Lund M; Jönsson B
    Biophys J; 2003 Nov; 85(5):2940-7. PubMed ID: 14581196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid measurement of protein osmotic second virial coefficients by self-interaction chromatography.
    Tessier PM; Lenhoff AM; Sandler SI
    Biophys J; 2002 Mar; 82(3):1620-31. PubMed ID: 11867474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein interactions in undersaturated and supersaturated solutions: a study using light and x-ray scattering.
    Narayanan J; Liu XY
    Biophys J; 2003 Jan; 84(1):523-32. PubMed ID: 12524304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular origins of osmotic second virial coefficients of proteins.
    Neal BL; Asthagiri D; Lenhoff AM
    Biophys J; 1998 Nov; 75(5):2469-77. PubMed ID: 9788942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Protein Interactions of Concentrated Globular Protein Solutions Using Colloidal Models.
    Woldeyes MA; Calero-Rubio C; Furst EM; Roberts CJ
    J Phys Chem B; 2017 May; 121(18):4756-4767. PubMed ID: 28422503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomically detailed simulations of concentrated protein solutions: the effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems.
    McGuffee SR; Elcock AH
    J Am Chem Soc; 2006 Sep; 128(37):12098-110. PubMed ID: 16967959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics study of water penetration in staphylococcal nuclease.
    Damjanović A; García-Moreno B; Lattman EE; García AE
    Proteins; 2005 Aug; 60(3):433-49. PubMed ID: 15971206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening of protein-ligand interactions by affinity chromatography.
    García CD; Holman SC; Henry CS; Wilson WW
    Biotechnol Prog; 2003; 19(2):575-9. PubMed ID: 12675603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal breaking of spanning water networks in the hydration shell of proteins.
    Brovchenko I; Krukau A; Smolin N; Oleinikova A; Geiger A; Winter R
    J Chem Phys; 2005 Dec; 123(22):224905. PubMed ID: 16375508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinguishing thermodynamic and kinetic views of the preferential hydration of protein surfaces.
    Priya MH; Shah JK; Asthagiri D; Paulaitis ME
    Biophys J; 2008 Sep; 95(5):2219-25. PubMed ID: 18515399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements.
    Kuehner DE; Heyer C; Rämsch C; Fornefeld UM; Blanch HW; Prausnitz JM
    Biophys J; 1997 Dec; 73(6):3211-24. PubMed ID: 9414232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies.
    Sahin E; Grillo AO; Perkins MD; Roberts CJ
    J Pharm Sci; 2010 Dec; 99(12):4830-48. PubMed ID: 20821389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of lysozyme in guanidinium chloride solutions from static and dynamic light-scattering measurements.
    Liu W; Cellmer T; Keerl D; Prausnitz JM; Blanch HW
    Biotechnol Bioeng; 2005 May; 90(4):482-90. PubMed ID: 15778988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-variate approach to global protein aggregation behavior and kinetics: effects of pH, NaCl, and temperature for alpha-chymotrypsinogen A.
    Li Y; Ogunnaike BA; Roberts CJ
    J Pharm Sci; 2010 Feb; 99(2):645-62. PubMed ID: 19653264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the hydration of proteins: prediction of structural and hydrodynamic parameters from X-ray diffraction and scattering data.
    Durchschlag H; Zipper P
    Eur Biophys J; 2003 Aug; 32(5):487-502. PubMed ID: 12715248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of the dynamic transition upon pressurization of crystalline proteins.
    Oleinikova A; Smolin N; Brovchenko I
    J Phys Chem B; 2006 Oct; 110(39):19619-24. PubMed ID: 17004829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.