BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 15980182)

  • 21. Effect of PEG end-group hydrophobicity on lysozyme interactions in solution characterized by light scattering.
    Priya MH; Pratt LR; Paulaitis ME
    Langmuir; 2011 Nov; 27(22):13713-8. PubMed ID: 21958073
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A two level hierarchical model of protein retention in ion exchange chromatography.
    Salvalaglio M; Paloni M; Guelat B; Morbidelli M; Cavallotti C
    J Chromatogr A; 2015 Sep; 1411():50-62. PubMed ID: 26278361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of electrostatics in protein-protein interactions of a monoclonal antibody.
    Roberts D; Keeling R; Tracka M; van der Walle CF; Uddin S; Warwicker J; Curtis R
    Mol Pharm; 2014 Jul; 11(7):2475-89. PubMed ID: 24892385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A molecular-thermodynamic model for the interactions between globular proteins in aqueous solutions: applications to bovine serum albumin (BSA), lysozyme, alpha-chymotrypsin, and immuno-gamma-globulins (IgG) solutions.
    Jin L; Yu YX; Gao GH
    J Colloid Interface Sci; 2006 Dec; 304(1):77-83. PubMed ID: 16987523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasonic storage modulus as a novel parameter for analyzing protein-protein interactions in high protein concentration solutions: correlation with static and dynamic light scattering measurements.
    Saluja A; Badkar AV; Zeng DL; Nema S; Kalonia DS
    Biophys J; 2007 Jan; 92(1):234-44. PubMed ID: 17028129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic analysis of protein unfolding in aqueous solutions as a multisite reaction of protein with water and solute molecules.
    Miyawaki O
    Biophys Chem; 2009 Sep; 144(1-2):46-52. PubMed ID: 19573978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of peptide solutions: a light scattering and numerical study.
    Egelhaaf SU; Lobaskin V; Bauer HH; Merkle HP; Schurtenberger P
    Eur Phys J E Soft Matter; 2004 Feb; 13(2):153-64. PubMed ID: 15052425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering.
    Ma Y; Acosta DM; Whitney JR; Podgornik R; Steinmetz NF; French RH; Parsegian VA
    J Biol Phys; 2015 Jan; 41(1):85-97. PubMed ID: 25403822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ion specific protein assembly and hydrophobic surface forces.
    Lund M; Jungwirth P; Woodward CE
    Phys Rev Lett; 2008 Jun; 100(25):258105. PubMed ID: 18643709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of biological macromolecules: not a simple slaving by hydration water.
    Khodadadi S; Roh JH; Kisliuk A; Mamontov E; Tyagi M; Woodson SA; Briber RM; Sokolov AP
    Biophys J; 2010 Apr; 98(7):1321-6. PubMed ID: 20371332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA; Whitten ST; Hilser VJ; García-Moreno E B
    Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature dependence of lysozyme hydration and the role of elastic energy.
    Wang HJ; Kleinhammes A; Tang P; Xu Y; Wu Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031924. PubMed ID: 21517540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Broadband depolarized light scattering study of diluted protein aqueous solutions.
    Perticaroli S; Comez L; Paolantoni M; Sassi P; Lupi L; Fioretto D; Paciaroni A; Morresi A
    J Phys Chem B; 2010 Jun; 114(24):8262-9. PubMed ID: 20509696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for non-DLVO hydration interactions in solutions of the protein apoferritin.
    Petsev DN; Vekilov PG
    Phys Rev Lett; 2000 Feb; 84(6):1339-42. PubMed ID: 11017513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrophobic forces between protein molecules in aqueous solutions of concentrated electrolyte.
    Curtis RA; Steinbrecher C; Heinemann M; Blanch HW; Prausnitz JM
    Biophys Chem; 2002 Aug; 98(3):249-65. PubMed ID: 12128178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of flexibility and polarity as determinants of the hydration of internal cavities and pockets in proteins.
    Damjanović A; Schlessman JL; Fitch CA; García AE; García-Moreno E B
    Biophys J; 2007 Oct; 93(8):2791-804. PubMed ID: 17604315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Partial molar volume of proteins studied by the three-dimensional reference interaction site model theory.
    Imai T; Kovalenko A; Hirata F
    J Phys Chem B; 2005 Apr; 109(14):6658-65. PubMed ID: 16851748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic versus kosmotropic ions.
    Parmar AS; Muschol M
    Biophys J; 2009 Jul; 97(2):590-8. PubMed ID: 19619474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study.
    Smolin N; Winter R
    J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Colloidal interactions between monoclonal antibodies in aqueous solutions.
    Arzenšek D; Kuzman D; Podgornik R
    J Colloid Interface Sci; 2012 Oct; 384(1):207-16. PubMed ID: 22840854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.