These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 15980449)

  • 1. MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides.
    Zhang GL; Khan AM; Srinivasan KN; August JT; Brusic V
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W172-9. PubMed ID: 15980449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of supertype-specific HLA class I binding peptides using support vector machines.
    Zhang GL; Bozic I; Kwoh CK; August JT; Brusic V
    J Immunol Methods; 2007 Mar; 320(1-2):143-54. PubMed ID: 17303158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEPVAC: a web server for multi-epitope vaccine development based on the prediction of supertypic MHC ligands.
    Reche PA; Reinherz EL
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W138-42. PubMed ID: 15980443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research.
    Lin HH; Zhang GL; Tongchusak S; Reinherz EL; Brusic V
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S22. PubMed ID: 19091022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of class I T-cell epitopes: evidence of presence of immunological hot spots inside antigens.
    Srinivasan KN; Zhang GL; Khan AM; August JT; Brusic V
    Bioinformatics; 2004 Aug; 20 Suppl 1(Suppl 1):i297-302. PubMed ID: 15262812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MHCPred: A server for quantitative prediction of peptide-MHC binding.
    Guan P; Doytchinova IA; Zygouri C; Flower DR
    Nucleic Acids Res; 2003 Jul; 31(13):3621-4. PubMed ID: 12824380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hotspot Hunter: a computational system for large-scale screening and selection of candidate immunological hotspots in pathogen proteomes.
    Zhang GL; Khan AM; Srinivasan KN; Heiny A; Lee K; Kwoh CK; August JT; Brusic V
    BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S19. PubMed ID: 18315850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of promiscuous peptides that bind HLA class I molecules.
    Brusic V; Petrovsky N; Zhang G; Bajic VB
    Immunol Cell Biol; 2002 Jun; 80(3):280-5. PubMed ID: 12067415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitope distribution in ordered and disordered protein regions - part A. T-cell epitope frequency, affinity and hydropathy.
    Mitić NS; Pavlović MD; Jandrlić DR
    J Immunol Methods; 2014 Apr; 406():83-103. PubMed ID: 24614036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PromPDD, a web-based tool for the prediction, deciphering and design of promiscuous peptides that bind to HLA class I molecules.
    Zhang S; Chen J; Hong P; Li J; Tian Y; Wu Y; Wang S
    J Immunol Methods; 2020 Jan; 476():112685. PubMed ID: 31678214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural models for predicting viral vaccine targets.
    Zhang GL; Khan AM; Srinivasan KN; August JT; Brusic V
    J Bioinform Comput Biol; 2005 Oct; 3(5):1207-25. PubMed ID: 16278955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MULTIPRED2: a computational system for large-scale identification of peptides predicted to bind to HLA supertypes and alleles.
    Zhang GL; DeLuca DS; Keskin DB; Chitkushev L; Zlateva T; Lund O; Reinherz EL; Brusic V
    J Immunol Methods; 2011 Nov; 374(1-2):53-61. PubMed ID: 21130094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of binding of putative antigenic peptides to HLA-DRB1 alleles in Vogt-Koyanagi-Harada disease.
    Prasad PS; Levinson RD
    Clin Immunol; 2005 Aug; 116(2):143-8. PubMed ID: 15927531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity.
    Oyarzún P; Ellis JJ; Bodén M; Kobe B
    BMC Bioinformatics; 2013 Feb; 14():52. PubMed ID: 23409948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A population response analysis approach to assign class II HLA-epitope restrictions.
    Paul S; Dillon MBC; Arlehamn CSL; Huang H; Davis MM; McKinney DM; Scriba TJ; Sidney J; Peters B; Sette A
    J Immunol; 2015 Jun; 194(12):6164-6176. PubMed ID: 25948811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations.
    Nielsen M; Lundegaard C; Worning P; Lauemøller SL; Lamberth K; Buus S; Brunak S; Lund O
    Protein Sci; 2003 May; 12(5):1007-17. PubMed ID: 12717023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PREDBALB/c: a system for the prediction of peptide binding to H2d molecules, a haplotype of the BALB/c mouse.
    Zhang GL; Srinivasan KN; Veeramani A; August JT; Brusic V
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W180-3. PubMed ID: 15980450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the prediction of HLA class I-binding peptides using a supertype-based method.
    Wang S; Bai Z; Han J; Tian Y; Shang X; Wang L; Li J; Wu Y
    J Immunol Methods; 2014 Mar; 405():109-20. PubMed ID: 24508661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method.
    Gutiérrez AH; Martin WD; Bailey-Kellogg C; Terry F; Moise L; De Groot AS
    BMC Bioinformatics; 2015 Sep; 16():290. PubMed ID: 26370412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Class II HLA-peptide binding prediction using structural principles.
    Mohanapriya A; Lulu S; Kayathri R; Kangueane P
    Hum Immunol; 2009 Mar; 70(3):159-69. PubMed ID: 19187794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.