BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 15980598)

  • 1. Time-lapse atomic force microscopy in the characterization of amyloid-like fibril assembly and oligomeric intermediates.
    Goldsbury C; Green J
    Methods Mol Biol; 2005; 299():103-28. PubMed ID: 15980598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Watching amyloid fibrils grow by time-lapse atomic force microscopy.
    Goldsbury C; Kistler J; Aebi U; Arvinte T; Cooper GJ
    J Mol Biol; 1999 Jan; 285(1):33-9. PubMed ID: 9878384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction to Atomic Force Microscopy (AFM) in Biology.
    Kreplak L
    Curr Protoc Protein Sci; 2016 Aug; 85():17.7.1-17.7.21. PubMed ID: 27479503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Force Microscopy Characterization of Protein Fibrils Formed by the Amyloidogenic Region of the Bacterial Protein MinE on Mica and a Supported Lipid Bilayer.
    Chiang YL; Chang YC; Chiang IC; Mak HM; Hwang IS; Shih YL
    PLoS One; 2015; 10(11):e0142506. PubMed ID: 26562523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction to atomic force microscopy (AFM) in biology.
    Goldsbury CS; Scheuring S; Kreplak L
    Curr Protoc Protein Sci; 2009 Nov; Chapter 17():17.7.1-17.7.19. PubMed ID: 19937721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide.
    Green JD; Kreplak L; Goldsbury C; Li Blatter X; Stolz M; Cooper GS; Seelig A; Kistler J; Aebi U
    J Mol Biol; 2004 Sep; 342(3):877-87. PubMed ID: 15342243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human amylin oligomer growth and fibril elongation define two distinct phases in amyloid formation.
    Green JD; Goldsbury C; Kistler J; Cooper GJ; Aebi U
    J Biol Chem; 2004 Mar; 279(13):12206-12. PubMed ID: 14704152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force fluorescence microscopy in the characterization of amyloid fibril assembly and oligomeric intermediates.
    Ostapchenko V; Gasset M; Baskakov IV
    Methods Mol Biol; 2012; 849():157-67. PubMed ID: 22528089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stepwise oligomerization of murine amylin and assembly of amyloid fibrils.
    Palmieri LC; Melo-Ferreira B; Braga CA; Fontes GN; Mattos LJ; Lima LM
    Biophys Chem; 2013; 180-181():135-44. PubMed ID: 23974296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring biomolecular interactions by time-lapse atomic force microscopy.
    Stolz M; Stoffler D; Aebi U; Goldsbury C
    J Struct Biol; 2000 Sep; 131(3):171-80. PubMed ID: 11052889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial protegrin-1 forms amyloid-like fibrils with rapid kinetics suggesting a functional link.
    Jang H; Arce FT; Mustata M; Ramachandran S; Capone R; Nussinov R; Lal R
    Biophys J; 2011 Apr; 100(7):1775-83. PubMed ID: 21463591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of the growth, evolution, and self-aggregation of β-amyloid fibrils using tapping-mode atomic force microscopy.
    Serem WK; Bett CK; Ngunjiri JN; Garno JC
    Microsc Res Tech; 2011 Jul; 74(7):699-708. PubMed ID: 21698718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full-length rat amylin forms fibrils following substitution of single residues from human amylin.
    Green J; Goldsbury C; Mini T; Sunderji S; Frey P; Kistler J; Cooper G; Aebi U
    J Mol Biol; 2003 Feb; 326(4):1147-56. PubMed ID: 12589759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-scale imaging and dynamics of amylin-membrane interactions and its implication in type II diabetes mellitus.
    Cho WJ; Jena BP; Jeremic AM
    Methods Cell Biol; 2008; 90():267-86. PubMed ID: 19195555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous triangular structures of human islet amyloid polypeptide (amylin) with internal hydrophobic cavity and external wrapping morphology reveal the polymorphic nature of amyloid fibrils.
    Zhao J; Yu X; Liang G; Zheng J
    Biomacromolecules; 2011 May; 12(5):1781-94. PubMed ID: 21428404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction to atomic force microscopy (AFM) in biology.
    Goldsbury C; Scheuring S
    Curr Protoc Protein Sci; 2002 Nov; Chapter 17():17.7.1-17.7.17. PubMed ID: 18429225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR.
    Luca S; Yau WM; Leapman R; Tycko R
    Biochemistry; 2007 Nov; 46(47):13505-22. PubMed ID: 17979302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed atomic force microscopy reveals structural dynamics of amyloid β1-42 aggregates.
    Watanabe-Nakayama T; Ono K; Itami M; Takahashi R; Teplow DB; Yamada M
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5835-40. PubMed ID: 27162352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy.
    Milhiet PE; Yamamoto D; Berthoumieu O; Dosset P; Le Grimellec C; Verdier JM; Marchal S; Ando T
    PLoS One; 2010 Oct; 5(10):e13240. PubMed ID: 20949034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.