BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15981026)

  • 1. Osteogenic potentials with joint-loading modality.
    Yokota H; Tanaka SM
    J Bone Miner Metab; 2005; 23(4):302-8. PubMed ID: 15981026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone formation induced by a novel form of mechanical loading on joint tissue.
    Tanaka SM; Sun HB; Yokota H
    Biol Sci Space; 2004 Jun; 18(2):41-4. PubMed ID: 15308820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knee loading stimulates cortical bone formation in murine femurs.
    Zhang P; Su M; Tanaka SM; Yokota H
    BMC Musculoskelet Disord; 2006 Sep; 7():73. PubMed ID: 16984642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knee-loading modality drives molecular transport in mouse femur.
    Su M; Jiang H; Zhang P; Liu Y; Wang E; Hsu A; Yokota H
    Ann Biomed Eng; 2006 Oct; 34(10):1600-6. PubMed ID: 17029032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading.
    Lee KC; Maxwell A; Lanyon LE
    Bone; 2002 Sep; 31(3):407-12. PubMed ID: 12231414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint loading-driven bone formation and signaling pathways predicted from genome-wide expression profiles.
    Zhang P; Turner CH; Yokota H
    Bone; 2009 May; 44(5):989-98. PubMed ID: 19442616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diaphyseal bone formation in murine tibiae in response to knee loading.
    Zhang P; Tanaka SM; Jiang H; Su M; Yokota H
    J Appl Physiol (1985); 2006 May; 100(5):1452-9. PubMed ID: 16410382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation.
    Hsieh YF; Wang T; Turner CH
    Bone; 1999 Sep; 25(3):379-82. PubMed ID: 10495144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-amplitude, broad-frequency vibration effects on cortical bone formation in mice.
    Castillo AB; Alam I; Tanaka SM; Levenda J; Li J; Warden SJ; Turner CH
    Bone; 2006 Nov; 39(5):1087-1096. PubMed ID: 16793358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site specific bone adaptation response to mechanical loading.
    Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP
    J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location.
    Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth rate rather than gender determines the size of the adaptive response of the growing skeleton to mechanical strain.
    Mosley JR; Lanyon LE
    Bone; 2002 Jan; 30(1):314-9. PubMed ID: 11792603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle.
    Srinivasan S; Weimer DA; Agans SC; Bain SD; Gross TS
    J Bone Miner Res; 2002 Sep; 17(9):1613-20. PubMed ID: 12211431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knee loading dynamically alters intramedullary pressure in mouse femora.
    Zhang P; Su M; Liu Y; Hsu A; Yokota H
    Bone; 2007 Feb; 40(2):538-43. PubMed ID: 17070127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-element analysis of the mouse proximal ulna in response to elbow loading.
    Jiang F; Jalali A; Deguchi C; Chen A; Liu S; Kondo R; Minami K; Horiuchi T; Li BY; Robling AG; Chen J; Yokota H
    J Bone Miner Metab; 2019 May; 37(3):419-429. PubMed ID: 30062431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of surgical holes in mouse tibiae on bone formation induced by knee loading.
    Zhang P; Yokota H
    Bone; 2007 May; 40(5):1320-8. PubMed ID: 17344109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats.
    Mosley JR; Lanyon LE
    Bone; 1998 Oct; 23(4):313-8. PubMed ID: 9763142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an in vivo rabbit ulnar loading model.
    Baumann AP; Aref MW; Turnbull TL; Robling AG; Niebur GL; Allen MR; Roeder RK
    Bone; 2015 Jun; 75():55-61. PubMed ID: 25683214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-dependent enhancement of bone formation in murine tibiae and femora with knee loading.
    Zhang P; Tanaka SM; Sun Q; Turner CH; Yokota H
    J Bone Miner Metab; 2007; 25(6):383-91. PubMed ID: 17968490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.