These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15981035)

  • 1. Detoxification of cyanide by woody plants.
    Yu X; Zhou P; Liu Y; Hu H
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):150-4. PubMed ID: 15981035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of cyanide by woody plants.
    Larsen M; Trapp S; Pirandello A
    Chemosphere; 2004 Jan; 54(3):325-33. PubMed ID: 14575745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of cyanide by Chinese vegetation.
    Yu X; Trapp S; Zhou P; Wang C; Zhou X
    Chemosphere; 2004 Jul; 56(2):121-6. PubMed ID: 15120557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of fast growing woody plants from family Salicaceae to cadmium treatment.
    Lunácková L; Masarovicová E; Král'ová K; Stresko V
    Bull Environ Contam Toxicol; 2003 Mar; 70(3):576-85. PubMed ID: 12592534
    [No Abstract]   [Full Text] [Related]  

  • 5. Differences in Michaelis-Menten kinetics for different cultivars of maize during cyanide removal.
    Yu XZ; Gu JD
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):254-9. PubMed ID: 17064775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of temperature on the rate of cyanide metabolism of two woody plants.
    Yu X; Trapp S; Zhou P; Hu H
    Chemosphere; 2005 May; 59(8):1099-104. PubMed ID: 15833483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyanide removal by Chinese vegetation--quantification of the Michaelis-Menten kinetics.
    Yu X; Zhou P; Zhou X; Liu Y
    Environ Sci Pollut Res Int; 2005 Jul; 12(4):221-6. PubMed ID: 16137157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of temperature on the uptake and metabolism of cyanide by weeping willows.
    Yu XZ; Trapp S; Zhou PH; Chen L
    Int J Phytoremediation; 2007; 9(3):243-55. PubMed ID: 18246771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation and metabolic response of cyanide in weeping willows.
    Yu XZ; Gu JD; Liu S
    J Hazard Mater; 2007 Aug; 147(3):838-44. PubMed ID: 17335966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake, accumulation and metabolic response of ferricyanide in weeping willows.
    Yu XZ; Gu JD
    J Environ Monit; 2009 Jan; 11(1):145-52. PubMed ID: 19137150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x alba L.) metabolism.
    Yu XZ; Gu JD
    Arch Environ Contam Toxicol; 2007 May; 52(4):503-11. PubMed ID: 17380236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation of landfill leachate and compost wastewater by irrigation of Populus and Salix: Biomass and growth response.
    Justin MZ; Pajk N; Zupanc V; Zupancic M
    Waste Manag; 2010 Jun; 30(6):1032-42. PubMed ID: 20211551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport and fate of dieldrin in poplar and willow trees analyzed by SPME.
    Skaates SV; Ramaswami A; Anderson LG
    Chemosphere; 2005 Sep; 61(1):85-91. PubMed ID: 15893792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant tissue culture of fast-growing trees for phytoremediation research.
    Couselo JL; Corredoira E; Vieitez AM; Ballester A
    Methods Mol Biol; 2012; 877():247-63. PubMed ID: 22610633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars.
    Dos Santos Utmazian MN; Wieshammer G; Vega R; Wenzel WW
    Environ Pollut; 2007 Jul; 148(1):155-65. PubMed ID: 17241723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytotoxicity of cyanide to weeping willow trees.
    Yu X; Trapp S; Zhou P
    Environ Sci Pollut Res Int; 2005; 12(2):109-13. PubMed ID: 15859117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential for phytoremediation of iron cyanide complex by willows.
    Yu XZ; Zhou PH; Yang YM
    Ecotoxicology; 2006 Jul; 15(5):461-7. PubMed ID: 16703454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the potential of short rotation coppice (SRC) for cleanup of radionuclide-contaminated sites.
    Dutton MV; Humphreys PN
    Int J Phytoremediation; 2005; 7(4):279-93. PubMed ID: 16463541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Woody biomass phytoremediation of contaminated brownfield land.
    French CJ; Dickinson NM; Putwain PD
    Environ Pollut; 2006 Jun; 141(3):387-95. PubMed ID: 16271426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake, metabolism, accumulation and toxicity of cyanide in Willow trees.
    Larsen M; Ucisik AS; Trapp S
    Environ Sci Technol; 2005 Apr; 39(7):2135-42. PubMed ID: 15871248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.