These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 15981036)
1. Quantitative ultrastructure of metal-sequestering cells reflects intersite and interspecies differences in earthworm metal burdens. Morgan AJ; Turner MP Arch Environ Contam Toxicol; 2005 Jul; 49(1):45-52. PubMed ID: 15981036 [TBL] [Abstract][Full Text] [Related]
2. Morphological plasticity in metal-sequestering earthworm chloragocytes: morphometric electron microscopy provides a biomarker. of exposure in field populations. Morgan AJ; Turner MP; Morgan JE Environ Toxicol Chem; 2002 Mar; 21(3):610-8. PubMed ID: 11878475 [TBL] [Abstract][Full Text] [Related]
3. Metal compartmentation and speciation in a soil sentinel: the earthworm, Dendrodrilus rubidus. Cotter-Howells J; Charnock JM; Winters C; Kille P; Fry JC; Morgan AJ Environ Sci Technol; 2005 Oct; 39(19):7731-40. PubMed ID: 16245852 [TBL] [Abstract][Full Text] [Related]
4. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils. Ernst G; Zimmermann S; Christie P; Frey B Environ Pollut; 2008 Dec; 156(3):1304-13. PubMed ID: 18400348 [TBL] [Abstract][Full Text] [Related]
5. Riboflavin content of coelomocytes in earthworm (Dendrodrilus rubidus) field populations as a molecular biomarker of soil metal pollution. Plytycz B; Lis-Molenda U; Cygal M; Kielbasa E; Grebosz A; Duchnowski M; Andre J; Morgan AJ Environ Pollut; 2009 Nov; 157(11):3042-50. PubMed ID: 19541398 [TBL] [Abstract][Full Text] [Related]
6. Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM. Mrdakovic Popic J; Salbu B; Skipperud L Sci Total Environ; 2012 Jan; 414():167-76. PubMed ID: 22115612 [TBL] [Abstract][Full Text] [Related]
7. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils. Hobbelen PH; Koolhaas JE; van Gestel CA Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310 [TBL] [Abstract][Full Text] [Related]
8. Heavy metal concentrations in soil and earthworms in a floodplain grassland. van Vliet PC; van der Zee SE; Ma WC Environ Pollut; 2005 Dec; 138(3):505-16. PubMed ID: 15951081 [TBL] [Abstract][Full Text] [Related]
9. Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei. Peijnenburg WJ; Baerselman R; de Groot AC; Jager T; Posthuma L; Van Veen RP Ecotoxicol Environ Saf; 1999 Nov; 44(3):294-310. PubMed ID: 10581124 [TBL] [Abstract][Full Text] [Related]
10. Metallic trace element body burdens and gene expression analysis of biomarker candidates in Eisenia fetida, using an "exposure/depuration" experimental scheme with field soils. Bernard F; Brulle F; Douay F; Lemière S; Demuynck S; Vandenbulcke F Ecotoxicol Environ Saf; 2010 Jul; 73(5):1034-45. PubMed ID: 20149457 [TBL] [Abstract][Full Text] [Related]
11. Resistance to copper toxicity in populations of the earthworms Lumbricus rubellus and Dendrodrilus rubidus from contaminated mine wastes. Langdon CJ; Piearce TG; Meharg AA; Semple KT Environ Toxicol Chem; 2001 Oct; 20(10):2336-41. PubMed ID: 11596768 [TBL] [Abstract][Full Text] [Related]
12. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630 [TBL] [Abstract][Full Text] [Related]
13. Survival, Pb-uptake and behaviour of three species of earthworm in Pb treated soils determined using an OECD-style toxicity test and a soil avoidance test. Langdon CJ; Hodson ME; Arnold RE; Black S Environ Pollut; 2005 Nov; 138(2):368-75. PubMed ID: 15951078 [TBL] [Abstract][Full Text] [Related]
14. Species-specific heavy metal accumulation patterns of earthworms on a floodplain in Japan. Kamitani T; Kaneko N Ecotoxicol Environ Saf; 2007 Jan; 66(1):82-91. PubMed ID: 16324743 [TBL] [Abstract][Full Text] [Related]
15. Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses. Andre J; Charnock J; Stürzenbaum SR; Kille P; Morgan AJ; Hodson ME Environ Sci Technol; 2009 Sep; 43(17):6822-9. PubMed ID: 19764255 [TBL] [Abstract][Full Text] [Related]
16. Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species. Lukkari T; Haimi J Ecotoxicol Environ Saf; 2005 Sep; 62(1):35-41. PubMed ID: 15978289 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal binding properties of earthworm chloragosomes. Ireland MP Acta Biol Acad Sci Hung; 1978; 29(4):385-94. PubMed ID: 757448 [TBL] [Abstract][Full Text] [Related]
18. Arsenic speciation in the earthworms Lumbricus rubellus and Dendrodrilus rubidus. Langdon CJ; Piearce TG; Feldmann J; Semple KT; Meharg AA Environ Toxicol Chem; 2003 Jun; 22(6):1302-8. PubMed ID: 12785588 [TBL] [Abstract][Full Text] [Related]
19. Heavy metal exposure, reproductive activity, and demographic patterns in white-footed mice (Peromyscus leucopus) inhabiting a contaminated floodplain wetland. Levengood JM; Heske EJ Sci Total Environ; 2008 Jan; 389(2-3):320-8. PubMed ID: 17900661 [TBL] [Abstract][Full Text] [Related]
20. Differences in the accumulated metal concentrations in two epigeic earthworm species (Lumbricus rubellus and Dendrodrilus rubidus) living in contaminated soils. Morgan JE; Morgan AJ Bull Environ Contam Toxicol; 1991 Aug; 47(2):296-301. PubMed ID: 1912707 [No Abstract] [Full Text] [Related] [Next] [New Search]