BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 15981278)

  • 21. Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests.
    Wang G; Zhang J; Song F; Wu J; Feng S; Huang D
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):924-30. PubMed ID: 16572346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A proteomic approach to study Cry1Ac binding proteins and their alterations in resistant Heliothis virescens larvae.
    Jurat-Fuentes JL; Adang MJ
    J Invertebr Pathol; 2007 Jul; 95(3):187-91. PubMed ID: 17467006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression, purification and characterization of the Cry2Aa14 toxin from Bacillus thuringiensis subsp. kenyae.
    Hire RS; Makde RD; Dongre TK; D'souza SF
    Toxicon; 2009 Sep; 54(4):519-24. PubMed ID: 19486907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli.
    Wei Q; Kim YS; Seo JH; Jang WS; Lee IH; Cha HJ
    Appl Environ Microbiol; 2005 Sep; 71(9):5038-43. PubMed ID: 16151084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exchange of domain I from Bacillus thuringiensis Cry1 Toxins Influences protoxin stability and crystal formation.
    Rang C; Vachon V; Coux F; Carret C; Moar WJ; Brousseau R; Schwartz JL; Laprade R; Frutos R
    Curr Microbiol; 2001 Jul; 43(1):1-6. PubMed ID: 11375655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asn183 in alpha5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin.
    Likitvivatanavong S; Katzenmeier G; Angsuthanasombat C
    Arch Biochem Biophys; 2006 Jan; 445(1):46-55. PubMed ID: 16356469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solubility enhancement of Cry2Aa crystal through carboxy-terminal extension and synergism between the chimeric protein and Cry1Ac.
    Qiu X; Lu X; Ren X; Li R; Wu B; Yang S; Qi L; Mo X; Ding X; Xia L; Sun Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2243-2250. PubMed ID: 30617818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges.
    Downes S; Mahon R; Olsen K
    J Invertebr Pathol; 2007 Jul; 95(3):208-13. PubMed ID: 17470372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inheritance of resistance to Bt canola in a field-derived population of Plutella xylostella.
    Sayyed AH; Schuler TH; Wright DJ
    Pest Manag Sci; 2003 Nov; 59(11):1197-202. PubMed ID: 14620045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anopheles gambiae alkaline phosphatase is a functional receptor of Bacillus thuringiensis jegathesan Cry11Ba toxin.
    Hua G; Zhang R; Bayyareddy K; Adang MJ
    Biochemistry; 2009 Oct; 48(41):9785-93. PubMed ID: 19747003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution.
    Zhao JZ; Cao J; Li Y; Collins HL; Roush RT; Earle ED; Shelton AM
    Nat Biotechnol; 2003 Dec; 21(12):1493-7. PubMed ID: 14608363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in susceptibility to conventional insecticides of a Cry1Ac-selected population of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).
    Wu K; Guo Y
    Pest Manag Sci; 2004 Jul; 60(7):680-4. PubMed ID: 15260299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Bacillus thuringiensis Cry1Aa toxin: effects of trypsin and chymotrypsin site mutations on toxicity and stability.
    Bah A; van Frankenhuyzen K; Brousseau R; Masson L
    J Invertebr Pathol; 2004 Feb; 85(2):120-7. PubMed ID: 15050842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cry3Aa gene of Bacillus thuringiensis Bt886 encodes a toxin against long-horned beetles.
    Chen J; Dai LY; Wang XP; Tian YC; Lu MZ
    Appl Microbiol Biotechnol; 2005 May; 67(3):351-6. PubMed ID: 15647932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Construction of insecticidal recombinant Bacillus thuringiensis using an integrative vector].
    Yue CY; Sun M; Chen SW; Yu ZN
    Yi Chuan Xue Bao; 2003 Aug; 30(8):737-42. PubMed ID: 14682242
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Broadening the insecticidal spectrum of Lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A.
    Yue C; Sun M; Yu Z
    Biotechnol Bioeng; 2005 Aug; 91(3):296-303. PubMed ID: 15984034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved.
    Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP
    J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of baculovirus insecticides expressing tailored Bacillus thuringiensis CryIA(b) crystal proteins.
    Martens JW; Knoester M; Weijts F; Groffen SJ; Hu Z; Bosch D; Vlak JM
    J Invertebr Pathol; 1995 Nov; 66(3):249-57. PubMed ID: 8568280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of delta-endotoxin cryIA(c) gene of Bacillus thuringiensis in Escherichia coli and Streptomyces lividans.
    Yang R; Hu Z; Deng Z; Li J
    Chin J Biotechnol; 1998; 14(2):59-65. PubMed ID: 10196629
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The diversity of Bt resistance genes in species of Lepidoptera.
    Heckel DG; Gahan LJ; Baxter SW; Zhao JZ; Shelton AM; Gould F; Tabashnik BE
    J Invertebr Pathol; 2007 Jul; 95(3):192-7. PubMed ID: 17482643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.