These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 15981296)

  • 21. Recent innovations in protein separation on microchips by electrophoretic methods.
    Peng Y; Pallandre A; Tran NT; Taverna M
    Electrophoresis; 2008 Jan; 29(1):157-78. PubMed ID: 18058769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and testing of high-performance detection sensor for capillary electrophoresis microchips.
    Fu LM; Lee CY; Liao MH; Lin CH
    Biomed Microdevices; 2008 Feb; 10(1):73-80. PubMed ID: 17680365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A robust cross-linked polyacrylamide coating for microchip electrophoresis of dsDNA fragments.
    Lu JJ; Liu S
    Electrophoresis; 2006 Oct; 27(19):3764-71. PubMed ID: 16960840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic devices obtained by thermal toner transferring on glass substrate.
    do Lago CL; Neves CA; Pereira de Jesus D; da Silva HD; Brito-Neto JG; Fracassi da Silva JA
    Electrophoresis; 2004 Nov; 25(21-22):3825-31. PubMed ID: 15565679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface treatment and characterization: perspectives to electrophoresis and lab-on-chips.
    Pallandre A; de Lambert B; Attia R; Jonas AM; Viovy JL
    Electrophoresis; 2006 Feb; 27(3):584-610. PubMed ID: 16400705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simple approaches to close the open structure of microfluidic chips and connecting them to the macro-world.
    Székely L; Guttman A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep; 841(1-2):123-8. PubMed ID: 16597517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips.
    Chen Y; Zhang L; Chen G
    Electrophoresis; 2008 May; 29(9):1801-14. PubMed ID: 18384069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparing polyelectrolyte multilayer-coated PMMA microfluidic devices and glass microchips for electrophoretic separations.
    Currie CA; Shim JS; Lee SH; Ahn C; Limbach PA; Halsall HB; Heineman WR
    Electrophoresis; 2009 Dec; 30(24):4245-50. PubMed ID: 20013912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(vinyl alcohol)-coated microfluidic devices for high-performance microchip electrophoresis.
    Belder D; Deege A; Kohler F; Ludwig M
    Electrophoresis; 2002 Oct; 23(20):3567-73. PubMed ID: 12412126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores.
    Fan H; Chen Z; Zhang L; Yang P; Chen G
    J Chromatogr A; 2008 Feb; 1179(2):224-8. PubMed ID: 18096173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Separation of fluorescein isothiocyanate-labeled amines by microchip electrophoresis in uncoated and polyvinyl alcohol-coated glass chips using water and dimethyl sulfoxide as solvents of background electrolyte.
    Varjo SJ; Ludwig M; Belder D; Riekkola ML
    Electrophoresis; 2004 Jun; 25(12):1901-6. PubMed ID: 15213991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid bonding of Pyrex glass microchips.
    Akiyama Y; Morishima K; Kogi A; Kikutani Y; Tokeshi M; Kitamori T
    Electrophoresis; 2007 Mar; 28(6):994-1001. PubMed ID: 17370301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progress in microchip enantioseparations.
    Nagl S; Schulze P; Ludwig M; Belder D
    Electrophoresis; 2009 Aug; 30(16):2765-72. PubMed ID: 19653233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips.
    Kelly RT; Li Y; Woolley AT
    Anal Chem; 2006 Apr; 78(8):2565-70. PubMed ID: 16615765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deoxyribonucleic acid modified poly(dimethylsiloxane) microfluidic channels for the enhancement of microchip electrophoresis.
    Liang R; Hu P; Gan G; Qiu J
    Talanta; 2009 Mar; 77(5):1647-53. PubMed ID: 19159778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A rigid poly(dimethylsiloxane) sandwich electrophoresis microchip based on thin-casting method.
    Liu C; Cui D; Cai H; Chen X; Geng Z
    Electrophoresis; 2006 Jul; 27(14):2917-23. PubMed ID: 16721901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Versatile method for electroosmotic flow measurements in microchip electrophoresis.
    Shakalisava Y; Poitevin M; Viovy JL; Descroix S
    J Chromatogr A; 2009 Feb; 1216(6):1030-3. PubMed ID: 19118836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips.
    Kelly RT; Pan T; Woolley AT
    Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of poly(methyl methacrylate) microfluidic chips by redox-initiated polymerization.
    Chen J; Lin Y; Chen G
    Electrophoresis; 2007 Aug; 28(16):2897-903. PubMed ID: 17702066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microchips for CE: breakthroughs in real-world food analysis.
    Escarpa A; González MC; López Gil MA; Crevillén AG; Hervás M; García M
    Electrophoresis; 2008 Dec; 29(24):4852-61. PubMed ID: 19130567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.