These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15981585)

  • 1. A novel rhodamine-riboflavin conjugate probe exhibits distinct fluorescence resonance energy transfer that enables riboflavin trafficking and subcellular localization studies.
    Phelps MA; Foraker AB; Gao W; Dalton JT; Swaan PW
    Mol Pharm; 2004; 1(4):257-66. PubMed ID: 15981585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of endocytic organelles in the subcellular trafficking and localization of riboflavin.
    Huang SN; Phelps MA; Swaan PW
    J Pharmacol Exp Ther; 2003 Aug; 306(2):681-7. PubMed ID: 12721324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRET Between Riboflavin and 9-Anthraldehyde Based Fluorescent Organic Nanoparticles Possessing Antibacterial Activity.
    Mahajan PG; Dige NC; Suryawanshi SB; Dalavi DK; Kamble AA; Bhopate DP; Kadam AN; Kondalkar VV; Kolekar GB; Patil SR
    J Fluoresc; 2018 Jan; 28(1):207-215. PubMed ID: 29079896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence resonance energy transfer from sulfonated graphene to riboflavin: a simple way to detect vitamin B2.
    Kundu A; Nandi S; Layek RK; Nandi AK
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7392-9. PubMed ID: 23838272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A graphitic carbon nitride based fluorescence resonance energy transfer detection of riboflavin.
    Han J; Zou HY; Gao MX; Huang CZ
    Talanta; 2016; 148():279-84. PubMed ID: 26653450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition, co-internalization, and recycling of an avian riboflavin carrier protein in human placental trophoblasts.
    Mason CW; D'Souza VM; Bareford LM; Phelps MA; Ray A; Swaan PW
    J Pharmacol Exp Ther; 2006 May; 317(2):465-72. PubMed ID: 16399883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn(2+) using a rhodamine spirolactam as a trigger.
    Han ZX; Zhang XB; Li Z; Gong YJ; Wu XY; Jin Z; He CM; Jian LX; Zhang J; Shen GL; Yu RQ
    Anal Chem; 2010 Apr; 82(8):3108-13. PubMed ID: 20334436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Detection of Hg
    Shi WJ; Liu JY; Lo PC; Ng DKP
    Chem Asian J; 2019 Apr; 14(7):1059-1065. PubMed ID: 30776197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-depth fluorescence imaging using a two-photon FRET system for mitochondrial pH in live cells and tissues.
    Chang MJ; Kim K; Park KS; Kang JS; Lim CS; Kim HM; Kang C; Lee MH
    Chem Commun (Camb); 2018 Dec; 54(96):13531-13534. PubMed ID: 30431633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescence perspective on the differential interaction of riboflavin and flavin adenine dinucleotide with cucurbit[7]uril.
    Dutta Choudhury S; Mohanty J; Bhasikuttan AC; Pal H
    J Phys Chem B; 2010 Aug; 114(33):10717-27. PubMed ID: 20684509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-photon photodynamic therapy based on FRET using tumor-cell targeted riboflavin conjugated graphene quantum dot.
    Soleimany A; Khoee S; Dastan D; Shi Z; Yu S; Sarmento B
    J Photochem Photobiol B; 2023 Jan; 238():112602. PubMed ID: 36442423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodamine-based fluorescent probe for Al3+ through time-dependent PET-CHEF-FRET processes and its cell staining application.
    Sahana A; Banerjee A; Lohar S; Sarkar B; Mukhopadhyay SK; Das D
    Inorg Chem; 2013 Apr; 52(7):3627-33. PubMed ID: 23485146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convenient and efficient FRET platform featuring a rigid biphenyl spacer between rhodamine and BODIPY: transformation of 'turn-on' sensors into ratiometric ones with dual emission.
    Yu H; Xiao Y; Guo H; Qian X
    Chemistry; 2011 Mar; 17(11):3179-91. PubMed ID: 21312299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ratiometric fluorescent sensor based on g-CNQDs@Zn-MOF for the sensitive detection of riboflavin via FRET.
    Feng S; Pei F; Wu Y; Lv J; Hao Q; Yang T; Tong Z; Lei W
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():119004. PubMed ID: 33070014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of riboflavin transport by MDCK cells using quantitative fluorescence video microscopy.
    Lowy RJ; Spring KR
    J Membr Biol; 1990 Jul; 117(1):91-9. PubMed ID: 2402010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitization of an endogenous photosensitizer: electronic spectroscopy of riboflavin in the proximity of semiconductor, insulator, and metal nanoparticles.
    Chaudhuri S; Sardar S; Bagchi D; Singha SS; Lemmens P; Pal SK
    J Phys Chem A; 2015 May; 119(18):4162-9. PubMed ID: 25871406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodamine-based probes for metal ion-induced chromo-/fluorogenic dual signaling and their selectivity towards Hg(II) ion.
    Bag B; Pal A
    Org Biomol Chem; 2011 Jun; 9(12):4467-80. PubMed ID: 21503366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence emission and anisotropy from rhodamine dimers.
    Burghardt TP; Lyke JE; Ajtai K
    Biophys Chem; 1996 Mar; 59(1-2):119-31. PubMed ID: 8867332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine.
    Lee MH; Kim HJ; Yoon S; Park N; Kim JS
    Org Lett; 2008 Jan; 10(2):213-6. PubMed ID: 18078343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic studies on the interaction between riboflavin and albumins.
    Zhao H; Ge M; Zhang Z; Wang W; Wu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):811-7. PubMed ID: 16530468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.