BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 15981730)

  • 1. Prevalence study of proximal vertebral artery stenosis using high-resolution contrast-enhanced magnetic resonance angiography.
    Kim SH; Lee JS; Kwon OK; Han MK; Kim JH
    Acta Radiol; 2005 May; 46(3):314-21. PubMed ID: 15981730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incidence and prognosis of > or = 50% symptomatic vertebral or basilar artery stenosis: prospective population-based study.
    Marquardt L; Kuker W; Chandratheva A; Geraghty O; Rothwell PM
    Brain; 2009 Apr; 132(Pt 4):982-8. PubMed ID: 19293244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution, magnetization transfer saturation, variable flip angle, time-of-flight MRA in the detection of intracranial vascular stenoses.
    Dagirmanjian A; Ross JS; Obuchowski N; Lewin JS; Tkach JA; Ruggieri PM; Masaryk TJ
    J Comput Assist Tomogr; 1995; 19(5):700-6. PubMed ID: 7560313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnostic ability of 3-dimensional contrast-enhanced MR angiography in identifying vertebral basilar artery stenosis.
    Yi TY; Chen WH; Zhang MF; Chen YH; Cai RW; Wu ZZ; Wu YM; Shi YC; Chen BL; Guo TH; Wu CX; Yang MX; Chen XJ
    J Neurol Sci; 2016 Apr; 363():121-5. PubMed ID: 27000236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conventional T2-Weighted Imaging to Detect High-Grade Stenosis and Occlusion of Internal Carotid Artery, Vertebral Artery, and Basilar Artery.
    Li Q; Tian CL; Yang YW; Lou X; Yu SY
    J Stroke Cerebrovasc Dis; 2015 Jul; 24(7):1591-6. PubMed ID: 25900410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Vessel Occlusion in Acute Ischemic Stroke Patients: A Dual-Center Estimate Based on a Broad Definition of Occlusion Site.
    Waqas M; Mokin M; Primiani CT; Gong AD; Rai HH; Chin F; Rai AT; Levy EI; Siddiqui AH
    J Stroke Cerebrovasc Dis; 2020 Feb; 29(2):104504. PubMed ID: 31761735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertebral artery ostial stenosis: prevalence by digital subtraction angiography, MR angiography, and CT angiography.
    Kumar Dundamadappa S; Cauley K
    J Neuroimaging; 2013 Jul; 23(3):360-7. PubMed ID: 22251073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between findings of conventional and contrast-enhanced transcranial color-coded real-time sonography and angiography in patients with basilar artery occlusion.
    Koga M; Kimura K; Minematsu K; Yamaguchi T
    AJNR Am J Neuroradiol; 2002 Apr; 23(4):568-71. PubMed ID: 11950645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrast-enhanced 3T high-resolution MR imaging in symptomatic atherosclerotic basilar artery stenosis.
    Lou X; Ma N; Ma L; Jiang WJ
    AJNR Am J Neuroradiol; 2013 Mar; 34(3):513-7. PubMed ID: 22878005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent primitive hypoglossal artery with retrograde flow from the vertebrobasilar system: a case report.
    Elhammady MS; Başkaya MK; Sonmez OF; Morcos JJ
    Neurosurg Rev; 2007 Oct; 30(4):345-9; discussion 349. PubMed ID: 17687575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete nonvisualization of basilar artery on MR angiography in patients with vertebrobasilar ischemic stroke: favorable outcome factors.
    Kim HY; Chung CS; Moon SY; Lee KH; Han SH
    Cerebrovasc Dis; 2004; 18(4):269-76. PubMed ID: 15331872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution intracranial vessel wall imaging using 3D CUBE T1 weighted sequence.
    Li ML; Xu YY; Hou B; Sun ZY; Zhou HL; Jin ZY; Feng F; Xu WH
    Eur J Radiol; 2016 Apr; 85(4):803-7. PubMed ID: 26971427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Magnetic resonance angiography in vertebro-basilar ischemic accidents].
    Maeder P; Meuli R; Gudinchet F; Bogousslavsky J
    Praxis (Bern 1994); 1996 Feb; 85(9):272-7. PubMed ID: 8685571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximal great vessels of aortic arch: comparison of three-dimensional gadolinium-enhanced MR angiography and digital subtraction angiography.
    Randoux B; Marro B; Koskas F; Chiras J; Dormont D; Marsault C
    Radiology; 2003 Dec; 229(3):697-702. PubMed ID: 14563902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of spontaneous intracranial vertebral artery dissection with large artery disease.
    Lee JS; Yong SW; Bang OY; Shin YS; Kim BM; Kim SY
    Arch Neurol; 2006 Dec; 63(12):1738-44. PubMed ID: 17172613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilateral intracranial vertebral artery disease in the New England Medical Center, Posterior Circulation Registry.
    Shin HK; Yoo KM; Chang HM; Caplan LR
    Arch Neurol; 1999 Nov; 56(11):1353-8. PubMed ID: 10555655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymptomatic occlusive lesions of carotid and intracranial arteries in Japanese patients with ischemic heart disease: evaluation by brain magnetic resonance angiography.
    Uehara T; Tabuchi M; Hayashi T; Kurogane H; Yamadori A
    Stroke; 1996 Mar; 27(3):393-7. PubMed ID: 8610301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective MR angiography and intracranial collateral blood flow.
    Fürst G; Steinmetz H; Fischer H; Skutta B; Sitzer M; Aulich A; Kahn T; Mödder U
    J Comput Assist Tomogr; 1993; 17(2):178-83. PubMed ID: 8454742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracranial arterial wall enhancement using gadolinium-enhanced 3D black-blood T1-weighted imaging.
    Takano K; Hida K; Kuwabara Y; Yoshimitsu K
    Eur J Radiol; 2017 Jan; 86():13-19. PubMed ID: 28027739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the vertebrobasilar artery system by magnetic resonance angiography in the diagnosis of vertebrobasilar insufficiency.
    Nakagawa T; Yamane H; Nakai Y; Shigeta T; Takashima T
    Acta Otolaryngol Suppl; 1998; 538():54-7. PubMed ID: 9879402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.