BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15981924)

  • 1. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells.
    Prabha S; Labhasetwar V
    Mol Pharm; 2004; 1(3):211-9. PubMed ID: 15981924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel luminescent silica nanoparticles (LSN): p53 gene delivery system in breast cancer in vitro and in vivo.
    Rejeeth C; Salem A
    J Pharm Pharmacol; 2016 Mar; 68(3):305-15. PubMed ID: 27085860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formulation of Anti-miR-21 and 4-Hydroxytamoxifen Co-loaded Biodegradable Polymer Nanoparticles and Their Antiproliferative Effect on Breast Cancer Cells.
    Devulapally R; Sekar TV; Paulmurugan R
    Mol Pharm; 2015 Jun; 12(6):2080-92. PubMed ID: 25880495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer gene therapy mediated by RALA/plasmid DNA vectors: Nitrogen to phosphate groups ratio (N/P) as a tool for tunable transfection efficiency and apoptosis.
    Neves AR; Sousa A; Faria R; Albuquerque T; Queiroz JA; Costa D
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110610. PubMed ID: 31711736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression.
    Prabha S; Labhasetwar V
    Pharm Res; 2004 Feb; 21(2):354-64. PubMed ID: 15032319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles.
    Prabha S; Zhou WZ; Panyam J; Labhasetwar V
    Int J Pharm; 2002 Sep; 244(1-2):105-15. PubMed ID: 12204570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment.
    Westedt U; Kalinowski M; Wittmar M; Merdan T; Unger F; Fuchs J; Schäller S; Bakowsky U; Kissel T
    J Control Release; 2007 May; 119(1):41-51. PubMed ID: 17346845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MR traceable delivery of p53 tumor suppressor gene by PEI-functionalized superparamagnetic iron oxide nanoparticles.
    Lee HJ; Nguyen YT; Muthiah M; Vu-Quang H; Namgung R; Kim WJ; Yu MK; Jon S; Lee IK; Jeong YY; Park IK
    J Biomed Nanotechnol; 2012 Jun; 8(3):361-71. PubMed ID: 22764405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of tumor angiogenesis and growth by nanoparticle-mediated p53 gene therapy in mice.
    Prabha S; Sharma B; Labhasetwar V
    Cancer Gene Ther; 2012 Aug; 19(8):530-7. PubMed ID: 22595792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53 gene therapy of human breast carcinoma: using a transferrin-modified silica nanoparticles.
    Rejeeth C; Kannan S
    Breast Cancer; 2016 Jan; 23(1):101-110. PubMed ID: 24795076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan Stabilized Gold-Folate-Poly(lactide-co-glycolide) Nanoplexes Facilitate Efficient Gene Delivery in Hepatic and Breast Cancer Cells.
    Akinyelu J; Singh M
    J Nanosci Nanotechnol; 2018 Jul; 18(7):4478-4486. PubMed ID: 29442622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenovirus-mediated p53 and ING4 gene co-transfer elicits synergistic antitumor effects through enhancement of p53 acetylation in breast cancer.
    Wu J; Zhu Y; Xu C; Xu H; Zhou X; Yang J; Xie Y; Tao M
    Oncol Rep; 2016 Jan; 35(1):243-52. PubMed ID: 26530780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urocanic acid-modified chitosan-mediated p53 gene delivery inducing apoptosis of human hepatocellular carcinoma cell line HepG2 is involved in its antitumor effect in vitro and in vivo.
    Wang W; Yao J; Zhou JP; Lu Y; Wang Y; Tao L; Li YP
    Biochem Biophys Res Commun; 2008 Dec; 377(2):567-572. PubMed ID: 18929532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted nutlin-3a loaded nanoparticles inhibiting p53-MDM2 interaction: novel strategy for breast cancer therapy.
    Das M; Dilnawaz F; Sahoo SK
    Nanomedicine (Lond); 2011 Apr; 6(3):489-507. PubMed ID: 21542687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention.
    Sahoo SK; Labhasetwar V
    Mol Pharm; 2005; 2(5):373-83. PubMed ID: 16196490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [E1A gene transfection of human undifferentiated thyroid cancer cell line HTC/3 by nanoparticles].
    He XL; He DH; Liao XX; Zhan H; Ma ZF; Wang XF; Li Q; Li X; Li YJ
    Zhonghua Zhong Liu Za Zhi; 2007 Dec; 29(12):884-8. PubMed ID: 18478924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic gene delivery and transfection in human pancreatic cancer cells using epidermal growth factor receptor-targeted gelatin nanoparticles.
    Xu J; Amiji M
    J Vis Exp; 2012 Jan; (59):e3612. PubMed ID: 22231028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo expression and antitumor activity of p53 gene transfer with naked plasmid DNA in an ovarian cancer xenograft model in nude mice.
    Collinet P; Vereecque R; Sabban F; Vinatier D; Leblanc E; Narducci F; Querleu D; Quesnel B
    J Obstet Gynaecol Res; 2006 Oct; 32(5):449-53. PubMed ID: 16984510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two silica based nonviral gene therapy vectors for breast carcinoma: evaluation of the p53 delivery system in Balb/c mice.
    Rejeeth C; Vivek R
    Artif Cells Nanomed Biotechnol; 2017 May; 45(3):489-494. PubMed ID: 27111431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergism of wt-p53 and synthetic material in local nano-TAE gene therapy of hepatoma: comparison of four systems and the possible mechanism.
    Li G; Kang W; Jin M; Zhang L; Zheng J; Jia K; Ma J; Liu T; Dang X; Yan Z; Gao Z; Xu J
    BMC Cancer; 2019 Nov; 19(1):1126. PubMed ID: 31747895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.