These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 15982051)

  • 1. Bacterial printing press that regenerates its ink: contact-printing bacteria using hydrogel stamps.
    Weibel DB; Lee A; Mayer M; Brady SF; Bruzewicz D; Yang J; Diluzio WR; Clardy J; Whitesides GM
    Langmuir; 2005 Jul; 21(14):6436-42. PubMed ID: 15982051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps.
    Stevens MM; Mayer M; Anderson DG; Weibel DB; Whitesides GM; Langer R
    Biomaterials; 2005 Dec; 26(36):7636-41. PubMed ID: 15979701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifunctional, chemically patterned flat stamps for microcontact printing of polar inks.
    Duan X; Sadhu VB; Perl A; Péter M; Reinhoudt DN; Huskens J
    Langmuir; 2008 Apr; 24(7):3621-7. PubMed ID: 18294009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile stamps in microcontact printing: transferring inks by molecular recognition and from ink reservoirs.
    Xu H; Huskens J
    Chemistry; 2010 Feb; 16(8):2342-8. PubMed ID: 20127770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrodes combined with an agarose stamp for addressable micropatterning.
    Sekine S; Nakanishi S; Miyake T; Nagamine K; Kaji H; Nishizawa M
    Langmuir; 2010 Jul; 26(13):11526-9. PubMed ID: 20446669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer.
    Björk P; Holmström S; Inganäs O
    Small; 2006 Aug; 2(8-9):1068-74. PubMed ID: 17193170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Duplication of photoinduced azo polymer surface-relief gratings through a soft lithographic approach.
    Liu B; Wang M; He Y; Wang X
    Langmuir; 2006 Aug; 22(17):7405-10. PubMed ID: 16893245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micropatterned agarose gels for stamping arrays of proteins and gradients of proteins.
    Mayer M; Yang J; Gitlin I; Gracias DH; Whitesides GM
    Proteomics; 2004 Aug; 4(8):2366-76. PubMed ID: 15274132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of elastomeric stamps for microcontact printing of polar inks.
    Sadhu VB; Perl A; Péter M; Rozkiewicz DI; Engbers G; Ravoo BJ; Reinhoudt DN; Huskens J
    Langmuir; 2007 Jun; 23(12):6850-5. PubMed ID: 17480107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale patterns of dendrimers obtained by soft lithography using elastomeric stamps spontaneously structured by plasma treatment.
    Lalo H; Vieu C
    Langmuir; 2009 Jul; 25(13):7752-8. PubMed ID: 19499930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agarose-assisted micro-contact printing for high-quality biomolecular micro-patterns.
    Jang MJ; Nam Y
    Macromol Biosci; 2015 May; 15(5):613-21. PubMed ID: 25557616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically patterned flat stamps for microcontact printing.
    Sharpe RB; Burdinski D; Huskens J; Zandvliet HJ; Reinhoudt DN; Poelsema B
    J Am Chem Soc; 2005 Jul; 127(29):10344-9. PubMed ID: 16028946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcontact printing.
    Xie Y; Jiang X
    Methods Mol Biol; 2011; 671():239-48. PubMed ID: 20967634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new instrument for automated microcontact printing with stamp load adjustment.
    Bou Chakra E; Hannes B; Dilosquer G; Mansfield CD; Cabrera M
    Rev Sci Instrum; 2008 Jun; 79(6):064102. PubMed ID: 18601419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion of alkanethiols in PDMS and its implications on microcontact printing (muCP).
    Balmer TE; Schmid H; Stutz R; Delamarche E; Michel B; Spencer ND; Wolf H
    Langmuir; 2005 Jan; 21(2):622-32. PubMed ID: 15641832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of stamp deformation on the quality of microcontact printing: theory and experiment.
    Sharp KG; Blackman GS; Glassmaker NJ; Jagota A; Hui CY
    Langmuir; 2004 Jul; 20(15):6430-8. PubMed ID: 15248733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(dimethylsiloxane) contamination in microcontact printing and its influence on patterning oligonucleotides.
    Thibault C; Séverac C; Mingotaud AF; Vieu C; Mauzac M
    Langmuir; 2007 Oct; 23(21):10706-14. PubMed ID: 17803329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro/nanopatterning of proteins via contact printing using high aspect ratio PMMA stamps and nanoimprint apparatus.
    Pla-Roca M; Fernandez JG; Mills CA; Martínez E; Samitier J
    Langmuir; 2007 Jul; 23(16):8614-8. PubMed ID: 17592861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesive micropatterns for cells: a microcontact printing protocol.
    Théry M; Piel M
    Cold Spring Harb Protoc; 2009 Jul; 2009(7):pdb.prot5255. PubMed ID: 20147220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive microCP on ultrathin block copolymer films: investigation of the microCP mechanism and application to sub-microm (bio)molecular patterning.
    Feng CL; Vancso GJ; Schönherr H
    Langmuir; 2007 Jan; 23(3):1131-40. PubMed ID: 17241023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.