BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 15982053)

  • 1. Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events.
    Clare BH; Abbott NL
    Langmuir; 2005 Jul; 21(14):6451-61. PubMed ID: 15982053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the azimuthal anchoring energy of liquid crystals in contact with oligo(ethylene glycol)-terminated self-assembled monolayers supported on obliquely deposited gold films.
    Clare BH; Guzman O; de Pablo JJ; Abbott NL
    Langmuir; 2006 May; 22(10):4654-9. PubMed ID: 16649778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of 4-cyano-4'-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces.
    Park JS; Jang CH; Tingey ML; Lowe AM; Abbott NL
    J Colloid Interface Sci; 2006 Dec; 304(2):459-73. PubMed ID: 17022994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anchoring energies of liquid crystals measured on surfaces presenting oligopeptides.
    Clare BH; Guzman O; de Pablo J; Abbott NL
    Langmuir; 2006 Aug; 22(18):7776-82. PubMed ID: 16922563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals.
    Luk YY; Tingey ML; Dickson KA; Raines RT; Abbott NL
    J Am Chem Soc; 2004 Jul; 126(29):9024-32. PubMed ID: 15264835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using measurements of anchoring energies of liquid crystals on surfaces to quantify proteins captured by immobilized ligands.
    Govindaraju T; Bertics PJ; Raines RT; Abbott NL
    J Am Chem Soc; 2007 Sep; 129(36):11223-31. PubMed ID: 17705384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of surfactant tail branching and organization on the orientation of liquid crystals at aqueous-liquid crystal interfaces.
    Lockwood NA; de Pablo JJ; Abbott NL
    Langmuir; 2005 Jul; 21(15):6805-14. PubMed ID: 16008390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of affinity microcontact printed proteins by using liquid crystals.
    Tingey ML; Wilyana S; Snodgrass EJ; Abbott NL
    Langmuir; 2004 Aug; 20(16):6818-26. PubMed ID: 15274590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon Raman scattering studies of liquid crystal anchoring on liquid-crystal-based self-assembled monolayers.
    Critchley K; Cheadle EM; Zhang HL; Baldwin KJ; Liu Q; Cheng Y; Fukushima H; Tamaki T; Batchelder DN; Bushby RJ; Evans SD
    J Phys Chem B; 2009 Nov; 113(47):15550-7. PubMed ID: 19921953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces.
    Cadwell KD; Alf ME; Abbott NL
    J Phys Chem B; 2006 Dec; 110(51):26081-8. PubMed ID: 17181261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of the orientations of thermotropic liquid crystals to protein binding events at lipid-decorated interfaces.
    Brake JM; Abbott NL
    Langmuir; 2007 Jul; 23(16):8497-507. PubMed ID: 17595119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of immobilization of thrombin inhibitors onto self-assembled monolayers on the adsorption and activity of thrombin.
    Freitas SC; Barbosa MA; Martins MC
    Biomaterials; 2010 May; 31(14):3772-80. PubMed ID: 20153046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-binding peptides for the noncovalent modification of polymer surfaces: effects of peptide density on the subsequent immobilization of functional proteins.
    Date T; Sekine J; Matsuno H; Serizawa T
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):351-9. PubMed ID: 21288050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TAT peptide immobilization on gold surfaces: a comparison study with a thiolated peptide and alkylthiols using AFM, XPS, and FT-IRRAS.
    Cho Y; Ivanisevic A
    J Phys Chem B; 2005 Apr; 109(13):6225-32. PubMed ID: 16851689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecularly designed surfaces for blood deheparinization using an immobilized heparin-binding peptide.
    Martins MC; Curtin SA; Freitas SC; Salgueiro P; Ratner BD; Barbosa MA
    J Biomed Mater Res A; 2009 Jan; 88(1):162-73. PubMed ID: 18286636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow dynamics of thin nematic films in the presence of adsorbed nanoparticles.
    Grollau S; Guzmán O; Abbott NL; de Pablo JJ
    J Chem Phys; 2005 Jan; 122(2):024703. PubMed ID: 15638610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive landing of peptide ions on self-assembled monolayer surfaces: an alternative approach for covalent immobilization of peptides on surfaces.
    Wang P; Hadjar O; Gassman PL; Laskin J
    Phys Chem Chem Phys; 2008 Mar; 10(11):1512-22. PubMed ID: 18327307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of microscopic and planar oil-water interfaces that are decorated with prescribed densities of insoluble amphiphiles.
    Meli MV; Lin IH; Abbott NL
    J Am Chem Soc; 2008 Apr; 130(13):4326-33. PubMed ID: 18335929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Azimuthal anchoring energy at the interface between a nematic liquid crystal and a PTFE substrate.
    Campanelli E; Faetti S; Nobili M
    Eur Phys J E Soft Matter; 2003 Jun; 11(2):199-209. PubMed ID: 15011060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discotic nematic liquid crystals: science and technology.
    Bisoyi HK; Kumar S
    Chem Soc Rev; 2010 Jan; 39(1):264-85. PubMed ID: 20023852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.