These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15982522)

  • 1. Modelling imaging based on core-loss spectroscopy in scanning transmission electron microscopy.
    Findlay SD; Oxley MP; Pennycook SJ; Allen LJ
    Ultramicroscopy; 2005 Sep; 104(2):126-40. PubMed ID: 15982522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling high-resolution electron microscopy based on core-loss spectroscopy.
    Allen LJ; Findlay SD; Oxley MP; Witte C; Zaluzec NJ
    Ultramicroscopy; 2006; 106(11-12):1001-11. PubMed ID: 16843600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An emission-potential multislice approximation to simulate thermal diffuse scattering in high-resolution transmission electron microscopy.
    Rosenauer A; Schowalter M; Titantah JT; Lamoen D
    Ultramicroscopy; 2008 Nov; 108(12):1504-13. PubMed ID: 18514420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope.
    Cosgriff EC; Oxley MP; Allen LJ; Pennycook SJ
    Ultramicroscopy; 2005 Mar; 102(4):317-26. PubMed ID: 15694678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images.
    Croitoru MD; Van Dyck D; Van Aert S; Bals S; Verbeeck J
    Ultramicroscopy; 2006; 106(10):933-40. PubMed ID: 16737777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling atomic-resolution scanning transmission electron microscopy images.
    Findlay SD; Oxley MP; Allen LJ
    Microsc Microanal; 2008 Feb; 14(1):48-59. PubMed ID: 18096101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decisive factors for realizing atomic-column resolution using STEM and EELS.
    Kimoto K; Ishizuka K; Matsui Y
    Micron; 2008; 39(3):257-62. PubMed ID: 18054240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The statistics of the thermal motion of the atoms during imaging process in transmission electron microscopy and related techniques.
    Rother A; Gemming T; Lichte H
    Ultramicroscopy; 2009 Jan; 109(2):139-46. PubMed ID: 19027234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic resolution STEM analysis of defects and interfaces in ceramic materials.
    Klie RF; Zhu Y
    Micron; 2005; 36(3):219-31. PubMed ID: 15725591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Element-selective imaging of atomic columns in a crystal using STEM and EELS.
    Kimoto K; Asaka T; Nagai T; Saito M; Matsui Y; Ishizuka K
    Nature; 2007 Nov; 450(7170):702-4. PubMed ID: 17965728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy.
    Van Aert S; Verbeeck J; Erni R; Bals S; Luysberg M; Van Dyck D; Van Tendeloo G
    Ultramicroscopy; 2009 Sep; 109(10):1236-44. PubMed ID: 19525069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope.
    Yakovlev S; Libera M
    Micron; 2008 Aug; 39(6):734-40. PubMed ID: 18096395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy.
    D'Alfonso AJ; Findlay SD; Oxley MP; Pennycook SJ; van Benthem K; Allen LJ
    Ultramicroscopy; 2007 Dec; 108(1):17-28. PubMed ID: 17395376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent and incoherent effects on the imaging and scattering process in transmission electron microscopy and off-axis electron holography.
    Koch W; Lubk A; Grossmann F; Lichte H; Schmidt R
    Ultramicroscopy; 2010 Oct; 110(11):1397-403. PubMed ID: 20673613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice-resolution contrast from a focused coherent electron probe. Part II.
    Findlay SD; Allen LJ; Oxley MP; Rossouw CJ
    Ultramicroscopy; 2003 Jul; 96(1):65-81. PubMed ID: 12623172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thickness measurement of hydrated and dehydrated cryosections by EELS.
    Shi S; Sun S; Andrews SB; Leapman RD
    Microsc Res Tech; 1996 Feb; 33(3):241-50. PubMed ID: 8652882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal diffuse scattering in transmission electron microscopy.
    Forbes BD; D'Alfonso AJ; Findlay SD; Van Dyck D; Lebeau JM; Stemmer S; Allen LJ
    Ultramicroscopy; 2011 Dec; 111(12):1670-80. PubMed ID: 22088442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part II: inelastic scattering.
    D'Alfonso AJ; Cosgriff EC; Findlay SD; Behan G; Kirkland AI; Nellist PD; Allen LJ
    Ultramicroscopy; 2008 Nov; 108(12):1567-78. PubMed ID: 18617330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress and perspectives for atomic-resolution electron microscopy.
    Smith DJ
    Ultramicroscopy; 2008 Feb; 108(3):159-66. PubMed ID: 18054169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic scattering of high-energy electrons by dopant atoms within a crystal in transmission electron microscopy.
    Mendis BG
    Acta Crystallogr A; 2008 Nov; 64(Pt 6):613-24. PubMed ID: 18931417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.