These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 15982674)

  • 1. Controllability of non-linear biochemical systems.
    Ervadi-Radhakrishnan A; Voit EO
    Math Biosci; 2005 Jul; 196(1):99-123. PubMed ID: 15982674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approximation of delays in biochemical systems.
    Mocek WT; Rudnicki R; Voit EO
    Math Biosci; 2005 Dec; 198(2):190-216. PubMed ID: 16181644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient method for calculation of dynamic logarithmic gains in biochemical systems theory.
    Shiraishi F; Hatoh Y; Irie T
    J Theor Biol; 2005 May; 234(1):79-85. PubMed ID: 15721037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling metabolic networks using power-laws and S-systems.
    Voit EO
    Essays Biochem; 2008; 45():29-40. PubMed ID: 18793121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating parameters for generalized mass action models using constraint propagation.
    Tucker W; Kutalik Z; Moulton V
    Math Biosci; 2007 Aug; 208(2):607-20. PubMed ID: 17306307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canonical sensitivities: a useful tool to deal with large perturbations in metabolic network modeling.
    Guebel DV
    In Silico Biol; 2004; 4(2):163-82. PubMed ID: 15107021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation and analysis of time-dependent sensitivities in Generalized Mass Action systems.
    Schwacke JH; Voit EO
    J Theor Biol; 2005 Sep; 236(1):21-38. PubMed ID: 15967181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yield optimization of regulated metabolic systems using deterministic branch-and-reduce methods.
    Polisetty PK; Gatzke EP; Voit EO
    Biotechnol Bioeng; 2008 Apr; 99(5):1154-69. PubMed ID: 18064703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical and computational techniques to deduce complex biochemical reaction mechanisms.
    Crampin EJ; Schnell S; McSharry PE
    Prog Biophys Mol Biol; 2004 Sep; 86(1):77-112. PubMed ID: 15261526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic cooperativity in non-linear dynamics of genetic regulatory networks.
    Rosenfeld S
    Math Biosci; 2007 Nov; 210(1):121-42. PubMed ID: 17617426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges in lin-log modelling of glycolysis in Lactococcus lactis.
    del Rosario RC; Mendoza E; Voit EO
    IET Syst Biol; 2008 May; 2(3):136-49. PubMed ID: 18537454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete synchronizability of chaotic systems: a geometric approach.
    SolĂ­s-Perales G; Ayala V; Kliemann W; Femat R
    Chaos; 2003 Jun; 13(2):495-501. PubMed ID: 12777112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicriteria optimization of biochemical systems by linear programming: application to production of ethanol by Saccharomyces cerevisiae.
    Vera J; de Atauri P; Cascante M; Torres NV
    Biotechnol Bioeng; 2003 Aug; 83(3):335-43. PubMed ID: 12783489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximative kinetic formats used in metabolic network modeling.
    Heijnen JJ
    Biotechnol Bioeng; 2005 Sep; 91(5):534-45. PubMed ID: 16003779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalar modeling and analysis of a 3D biochemical reaction model.
    Maquet J; Letellier C; Aguirre LA
    J Theor Biol; 2004 Jun; 228(3):421-30. PubMed ID: 15135040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of dynamic labeling data.
    Voit EO; Alvarez-Vasquez F; Sims KJ
    Math Biosci; 2004 Sep; 191(1):83-99. PubMed ID: 15312745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Engineering with power-law and linear-logarithmic systems.
    Marin-Sanguino A; Torres NV; Mendoza ER; Oesterhelt D
    Math Biosci; 2009 Mar; 218(1):50-8. PubMed ID: 19174172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characteristics of the stoichiometric regulation of glycolysis in prokaryotic cells. A model].
    Ivanitskaia IuG; Sel'kov EE
    Biofizika; 1985; 30(6):1016-21. PubMed ID: 4074758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges for the identification of biological systems from in vivo time series data.
    Voit EO; Marino S; Lall R
    In Silico Biol; 2005; 5(2):83-92. PubMed ID: 15972008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.