These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15982714)

  • 1. The regeneration and recycle of chromium etching solutions using concentrator cell membrane technology.
    Chaudhary AJ; Ganguli B; Grimes SM
    Chemosphere; 2006 Feb; 62(5):841-6. PubMed ID: 15982714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrolytic recovery of chromium salts from tannery wastewater.
    Sirajuddin ; Kakakhel L; Lutfullah G; Bhanger MI; Shah A; Niaz A
    J Hazard Mater; 2007 Sep; 148(3):560-5. PubMed ID: 17451875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of electrodialytic and dialytic removal of Cr, Cu and As from CCA-treated wood chips.
    Ribeiro AB; Rodríguez-Maroto JM; Mateus EP; Velizarova E; Ottosen LM
    Chemosphere; 2007 Jan; 66(9):1716-26. PubMed ID: 16930668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Doehlert matrix to the study of electrochemical oxidation of Cr(III) to Cr(VI) in order to recover chromium from wastewater tanning baths.
    Ouejhani A; Hellal F; Dachraoui M; Lallevé G; Fauvarque JF
    J Hazard Mater; 2008 Sep; 157(2-3):423-31. PubMed ID: 18314266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regeneration of Ce(IV) in simulated spent Cr-etching solutions using an undivided cell.
    Huang KL; Chen TS; Yeh KJ
    J Hazard Mater; 2009 Nov; 171(1-3):755-60. PubMed ID: 19608340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the electrochemical Cr(VI) reduction in aqueous solution.
    Barrera-Díaz C; Lugo-Lugo V; Roa-Morales G; Natividad R; Martínez-Delgadillo SA
    J Hazard Mater; 2011 Jan; 185(2-3):1362-8. PubMed ID: 21093150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium(VI) bioaccumulation capacities of adapted mixed cultures isolated from industrial saline wastewaters.
    Koçberber N; Dönmez G
    Bioresour Technol; 2007 Aug; 98(11):2178-83. PubMed ID: 17049232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anion effects on the electrochemical regeneration of Ce(IV) in nitric acid used for etching chromium.
    Chen TS; Yeh KJ; Huang KL
    J Hazard Mater; 2008 Apr; 152(3):922-8. PubMed ID: 17765399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of chromium from electroplating industry effluents by ion exchange resins.
    Cavaco SA; Fernandes S; Quina MM; Ferreira LM
    J Hazard Mater; 2007 Jun; 144(3):634-8. PubMed ID: 17336455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater.
    Rozendal RA; Sleutels TH; Hamelers HV; Buisman CJ
    Water Sci Technol; 2008; 57(11):1757-62. PubMed ID: 18547927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of hexavalent chromium reduction by scrap iron.
    Gheju M; Iovi A
    J Hazard Mater; 2006 Jul; 135(1-3):66-73. PubMed ID: 16386842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of chelating ion-exchange resins for separating Cr(III) from industrial effluents.
    Cavaco SA; Fernandes S; Augusto CM; Quina MJ; Gando-Ferreira LM
    J Hazard Mater; 2009 Sep; 169(1-3):516-23. PubMed ID: 19406569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined photolytic-electrolytic system for the simultaneous recovery of copper and degradation of phenol or 4-chlorophenol in mixed solutions.
    Chaudhary AJ; Grimes SM
    Chemosphere; 2008 Aug; 72(11):1636-42. PubMed ID: 18597812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass.
    Iftikhar AR; Bhatti HN; Hanif MA; Nadeem R
    J Hazard Mater; 2009 Jan; 161(2-3):941-7. PubMed ID: 18508197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of chromium and toxic ions present in mine drainage by Ectodermis of Opuntia.
    Barrera H; Ureña-Núñez F; Bilyeu B; Barrera-Díaz C
    J Hazard Mater; 2006 Aug; 136(3):846-53. PubMed ID: 16504390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electrochemical investigation of salts partition with ion exchange membranes.
    Ata N; Yazicigil Z; Oztekin Y
    J Hazard Mater; 2008 Dec; 160(1):154-60. PubMed ID: 18417288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous oxidation of phenol and reduction of Cr(VI) induced by contact glow discharge electrolysis.
    Liu Y
    J Hazard Mater; 2009 Sep; 168(2-3):992-6. PubMed ID: 19327885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins.
    Shi T; Wang Z; Liu Y; Jia S; Changming D
    J Hazard Mater; 2009 Jan; 161(2-3):900-6. PubMed ID: 18513867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV-visible spectrophotometer.
    Pehlivan E; Cetin S
    J Hazard Mater; 2009 Apr; 163(1):448-53. PubMed ID: 18692308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.