These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 15982766)
1. Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction. Kolb AF; Coates CJ; Kaminski JM; Summers JB; Miller AD; Segal DJ Trends Biotechnol; 2005 Aug; 23(8):399-406. PubMed ID: 15982766 [TBL] [Abstract][Full Text] [Related]
2. Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools. Coates CJ; Kaminski JM; Summers JB; Segal DJ; Miller AD; Kolb AF Trends Biotechnol; 2005 Aug; 23(8):407-19. PubMed ID: 15993503 [TBL] [Abstract][Full Text] [Related]
3. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Urnov FD; Miller JC; Lee YL; Beausejour CM; Rock JM; Augustus S; Jamieson AC; Porteus MH; Gregory PD; Holmes MC Nature; 2005 Jun; 435(7042):646-51. PubMed ID: 15806097 [TBL] [Abstract][Full Text] [Related]
4. A new method (GOREC) for directed mutagenesis and gene repair by homologous recombination. Maurisse R; Feugeas JP; Biet E; Kuzniak I; Leboulch P; Dutreix M; Sun JS Gene Ther; 2002 Jun; 9(11):703-7. PubMed ID: 12032692 [TBL] [Abstract][Full Text] [Related]
5. Site-specific DNA recombinases as instruments for genomic surgery. Akopian A; Marshall Stark W Adv Genet; 2005; 55():1-23. PubMed ID: 16291210 [TBL] [Abstract][Full Text] [Related]
6. Modification of hepatic genomic DNA using RNA/DNA oligonucleotides. Kren BT; Chen Z; Felsheim R; Roy Chowdhury N; Roy Chowdhury J; Steer CJ Gene Ther; 2002 Jun; 9(11):686-90. PubMed ID: 12032688 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of non-natural modules into proteins: structural features beyond the genetic code. Arnold U Biotechnol Lett; 2009 Aug; 31(8):1129-39. PubMed ID: 19404746 [TBL] [Abstract][Full Text] [Related]
9. Illegitimate DNA integration in mammalian cells. Würtele H; Little KC; Chartrand P Gene Ther; 2003 Oct; 10(21):1791-9. PubMed ID: 12960968 [TBL] [Abstract][Full Text] [Related]
10. Development of a dual-luciferase fusion gene as a sensitive marker for site-directed DNA repair strategies. Bennett M; Schaack J J Gene Med; 2003 Aug; 5(8):723-32. PubMed ID: 12898641 [TBL] [Abstract][Full Text] [Related]
11. Extrachromosomal genes: a powerful tool in gene targeting approaches. Colosimo A; Guida V; Palka G; Dallapiccola B Gene Ther; 2002 Jun; 9(11):679-82. PubMed ID: 12032686 [TBL] [Abstract][Full Text] [Related]
12. A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Tovkach A; Zeevi V; Tzfira T Plant J; 2009 Feb; 57(4):747-57. PubMed ID: 18980651 [TBL] [Abstract][Full Text] [Related]
13. ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. de Pater S; Neuteboom LW; Pinas JE; Hooykaas PJ; van der Zaal BJ Plant Biotechnol J; 2009 Oct; 7(8):821-35. PubMed ID: 19754840 [TBL] [Abstract][Full Text] [Related]
17. Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Carroll D; Beumer KJ; Morton JJ; Bozas A; Trautman JK Methods Mol Biol; 2008; 435():63-77. PubMed ID: 18370068 [TBL] [Abstract][Full Text] [Related]
18. Directed evolution for drug and nucleic acid delivery. Hida K; Hanes J; Ostermeier M Adv Drug Deliv Rev; 2007 Dec; 59(15):1562-78. PubMed ID: 17933418 [TBL] [Abstract][Full Text] [Related]
19. Targeted genome modification via triple helix formation. Kalish JM; Glazer PM Ann N Y Acad Sci; 2005 Nov; 1058():151-61. PubMed ID: 16394134 [TBL] [Abstract][Full Text] [Related]
20. Sequence-specific modification of mouse genomic DNA mediated by gene targeting techniques. Sangiuolo F; Novelli G Cytogenet Genome Res; 2004; 105(2-4):435-41. PubMed ID: 15237231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]