These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15983049)

  • 1. N1-aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus.
    Ohnuma M; Terui Y; Tamakoshi M; Mitome H; Niitsu M; Samejima K; Kawashima E; Oshima T
    J Biol Chem; 2005 Aug; 280(34):30073-82. PubMed ID: 15983049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique polyamines produced by an extreme thermophile, Thermus thermophilus.
    Oshima T
    Amino Acids; 2007 Aug; 33(2):367-72. PubMed ID: 17429571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putrescine Biosynthesis from Agmatine by Arginase (TtARG) in Thermus thermophilus.
    Kobayashi T; Sakamoto A; Kashiwagi K; Igarashi K; Takao K; Uemura T; Moriya T; Oshima T; Terui Y
    J Biochem; 2023 Jun; 174(1):81-88. PubMed ID: 37001547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures and enzymatic properties of a triamine/agmatine aminopropyltransferase from Thermus thermophilus.
    Ohnuma M; Ganbe T; Terui Y; Niitsu M; Sato T; Tanaka N; Tamakoshi M; Samejima K; Kumasaka T; Oshima T
    J Mol Biol; 2011 May; 408(5):971-86. PubMed ID: 21458463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkaline Stress Causes Changes in Polyamine Biosynthesis in
    Kobayashi T; Sakamoto A; Kashiwagi K; Igarashi K; Moriya T; Oshima T; Terui Y
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional identification of bacterial spermine, thermospermine, norspermine, norspermidine, spermidine, and N
    Li B; Liang J; Baniasadi HR; Kurihara S; Phillips MA; Michael AJ
    J Biol Chem; 2024 May; 300(5):107281. PubMed ID: 38588807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual biosynthesis pathway for longer-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Morimoto N; Fukuda W; Nakajima N; Masuda T; Terui Y; Kanai T; Oshima T; Imanaka T; Fujiwara S
    J Bacteriol; 2010 Oct; 192(19):4991-5001. PubMed ID: 20675472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new metabolic pathway for sym-homospermidine synthesis in an extreme thermophile, Thermus thermophilus.
    Oshima T
    J Gen Appl Microbiol; 2023 Nov; 69(2):102-108. PubMed ID: 37532583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enigmas of biosyntheses of unusual polyamines in an extreme thermophile, Thermus thermophilus.
    Oshima T
    Plant Physiol Biochem; 2010 Jul; 48(7):521-6. PubMed ID: 20417109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of polyamine synthesis pathway in Bacillus subtilis 168.
    Sekowska A; Bertin P; Danchin A
    Mol Microbiol; 1998 Aug; 29(3):851-8. PubMed ID: 9723923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long and branched polyamines are required for maintenance of the ribosome, tRNA
    Nakashima M; Yamagami R; Tomikawa C; Ochi Y; Moriya T; Asahara H; Fourmy D; Yoshizawa S; Oshima T; Hori H
    Genes Cells; 2017 Jul; 22(7):628-645. PubMed ID: 28544195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caldomycin, a new guanidopolyamine produced by a novel agmatine homocoupling enzyme involved in homospermidine biosynthesis.
    Kobayashi T; Sakamoto A; Hisano T; Kashiwagi K; Igarashi K; Takao K; Uemura T; Furuchi T; Sugita Y; Moriya T; Oshima T; Terui Y
    Sci Rep; 2024 Mar; 14(1):7566. PubMed ID: 38555406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active site geometry of a novel aminopropyltransferase for biosynthesis of hyperthermophile-specific branched-chain polyamine.
    Hidese R; Tse KM; Kimura S; Mizohata E; Fujita J; Horai Y; Umezawa N; Higuchi T; Niitsu M; Oshima T; Imanaka T; Inoue T; Fujiwara S
    FEBS J; 2017 Nov; 284(21):3684-3701. PubMed ID: 28881427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of polyamines in ornithine decarboxylase, arginine decarboxylase, and agmatine ureohydrolase deletion mutants of Escherichia coli strain K-12.
    Panagiotidis CA; Blackburn S; Low KB; Canellakis ES
    Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4423-7. PubMed ID: 2440022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis.
    Chattopadhyay MK; Tabor CW; Tabor H
    J Bacteriol; 2009 Sep; 191(17):5549-52. PubMed ID: 19542271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification, chemical synthesis, and biological functions of unusual polyamines produced by extreme thermophiles.
    Oshima T; Moriya T; Terui Y
    Methods Mol Biol; 2011; 720():81-111. PubMed ID: 21318868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first agmatine/cadaverine aminopropyl transferase: biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus.
    Cacciapuoti G; Porcelli M; Moretti MA; Sorrentino F; Concilio L; Zappia V; Liu ZJ; Tempel W; Schubot F; Rose JP; Wang BC; Brereton PS; Jenney FE; Adams MW
    J Bacteriol; 2007 Aug; 189(16):6057-67. PubMed ID: 17545282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C-terminal flexible region of branched-chain polyamine synthase facilitates substrate specificity and catalysis.
    Hidese R; Toyoda M; Yoshino KI; Fukuda W; Wihardja GA; Kimura S; Fujita J; Niitsu M; Oshima T; Imanaka T; Mizohata E; Fujiwara S
    FEBS J; 2019 Oct; 286(19):3926-3940. PubMed ID: 31162806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of acylated polyamine derivatives on polyamine uptake mechanism, cell growth, and polyamine pools in Escherichia coli, and the pursuit of structure/activity relationships.
    Karahalios P; Mamos P; Vynios DH; Papaioannou D; Kalpaxis DL
    Eur J Biochem; 1998 Feb; 251(3):998-1004. PubMed ID: 9490078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1.
    Chou HT; Kwon DH; Hegazy M; Lu CD
    J Bacteriol; 2008 Mar; 190(6):1966-75. PubMed ID: 18192388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.