These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 159831)
1. The influence of nicotinamide on microsomal drug-metabolizing activity in vitro. Müller D; Klinger W Exp Pathol (Jena); 1979; 17(7-8):474-8. PubMed ID: 159831 [No Abstract] [Full Text] [Related]
2. [Notes on the determination of the aminopyrine demethylase activity in liver microsomes. III. Time kinetics; effects of nicotinamide and semicarbazide]. Stretti G; Turchi G; Bauer C; Cercignani G; Gervasi PG; Di Natale G; Zoppi Z Boll Soc Ital Biol Sper; 1977 Nov; 53(22):2159-62. PubMed ID: 146507 [No Abstract] [Full Text] [Related]
4. Direct measurement of aminopyrine N-demethylase and antipyrine hydroxylase activities in a monolayer rat primary isolated hepatocyte system. Kotake AN Biochem Pharmacol; 1981 Sep; 30(17):2473-9. PubMed ID: 21043248 [TBL] [Abstract][Full Text] [Related]
5. Effect of nicotinamide administration to rats on the liver microsomal drug metabolizing enzymes. Nomura K; Shin M; Sano K; Umezawa C; Shimada T Int J Vitam Nutr Res; 1983; 53(1):36-43. PubMed ID: 6222007 [TBL] [Abstract][Full Text] [Related]
6. Comparison of nitrosocarbaryl and carbaryl: in vitro effects on hepatic microsomal aryl hydrocarbon hydroxylase, aminopyrine N-demethylase, epoxide hydrolase and cytosolic glutathione-S-transferase. Chan HH; Buhler DR Proc Natl Sci Counc Repub China B; 1984 Oct; 8(4):302-7. PubMed ID: 6443788 [TBL] [Abstract][Full Text] [Related]
7. Microsomal electron transport reactions. I. Interaction of reduced triphosphopyridine nucleotide during the oxidative demethylation of aminopyrine and cytochrome b 5 reduction. Cohen BS; Estabrook RW Arch Biochem Biophys; 1971 Mar; 143(1):37-45. PubMed ID: 4397836 [No Abstract] [Full Text] [Related]
8. Effect of 2-mercaptopropionylglycine on lipid peroxidation and drug oxidation in rat liver microsomes. Harata J; Nagata M; Ishiguro I; Ohta Y Biochem Int; 1984 Jan; 8(1):49-59. PubMed ID: 6477598 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of microsomal drug metabolism by histamine H2-receptor antagonists studied in vivo and in vitro in rodents. Speeg KV; Patwardhan RV; Avant GR; Mitchell MC; Schenker S Gastroenterology; 1982 Jan; 82(1):89-96. PubMed ID: 6118315 [TBL] [Abstract][Full Text] [Related]
10. Protection by Osbeckia aspera against carbon tetrachloride-mediated alterations in microsomal drug metabolizing enzyme activity. Jayatilaka KA; Thabrew MI J Pharm Pharmacol; 2000 Apr; 52(4):461-5. PubMed ID: 10813559 [TBL] [Abstract][Full Text] [Related]
11. [Effect of thiamine on the activity of liver endoplasmic reticulum enzymes metabolizing drugs]. Sushko LI; Lukienko PI Farmakol Toksikol; 1979; 42(1):56-9. PubMed ID: 421893 [TBL] [Abstract][Full Text] [Related]
12. [Toxicity of some acaricides and the change in liver microsomal aminopyrine demethylase activity under conditions of their combined and separate use]. Iakushko VE; Zlatev ZD Gig Tr Prof Zabol; 1975 Sep; (9):55-7. PubMed ID: 1176023 [No Abstract] [Full Text] [Related]
13. Attenuation of low dose phenobarbital induction of hepatic microsomal aminopyrine N-demethylase activity in rats by cimetidine. Levine M; Chang T; Bellward GD Biochem Biophys Res Commun; 1989 Aug; 162(3):1363-9. PubMed ID: 2764937 [TBL] [Abstract][Full Text] [Related]
14. Sex-dependent differences in drug metabolism in the rat. I. Temporal changes in microsomal drug-metabolizing system of the liver during sexual maturation. el-Masry S el-D ; Cohen GM; Mannering GJ Drug Metab Dispos; 1974; 2(3):267-78. PubMed ID: 4153058 [No Abstract] [Full Text] [Related]
15. Microsomal electron transport reactions. II. The use of reduced triphosphopyridine nucleotide and-or reduced diphosphopyridine nucleotide for the oxidative N-demethylation of aminopyrine and other drug substrates. Cohen BS; Estabrook RW Arch Biochem Biophys; 1971 Mar; 143(1):46-53. PubMed ID: 4397837 [No Abstract] [Full Text] [Related]
16. Hepatic oxidative drug metabolism and the microsomal milieu in a rat model of congenital hyperbilirubinemia. Meredith CG; Muhoberac BB; Gray JP; Speeg KV; Dunn D; Hoyumpa AM; Schenker S Biochem Pharmacol; 1986 Nov; 35(21):3831-7. PubMed ID: 3778508 [TBL] [Abstract][Full Text] [Related]
17. Interaction between ethanol metabolism and mixed-function oxidation in alcohol dehydrogenase positive and negative deermice. Gellert J; Alderman J; Lieber CS Biochem Pharmacol; 1986 Mar; 35(6):1037-41. PubMed ID: 2937407 [TBL] [Abstract][Full Text] [Related]
18. Stoichiometry of aminopyrine demethylation with and without NADH synergism. Jansson I; Schenkman JB Drug Metab Dispos; 1981; 9(5):461-5. PubMed ID: 6117446 [TBL] [Abstract][Full Text] [Related]
19. Caffeine demethylase activity in human and Dark Agouti rat liver microsomes. Comparison with aminopyrine N-demethylase activity. Agúndez JA; Luengo A; Benítez J Drug Metab Dispos; 1992; 20(3):343-9. PubMed ID: 1521502 [TBL] [Abstract][Full Text] [Related]
20. Some observations on the microsomal electron transport system and activities of drug oxidizing enzymes in human liver. Kamataki T; Kitada M; Kitagawa H Chem Pharm Bull (Tokyo); 1973 Jan; 21(1):8-11. PubMed ID: 4711517 [No Abstract] [Full Text] [Related] [Next] [New Search]