These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15983727)

  • 1. Thickness distribution of fresh eardrums of cat obtained with confocal microscopy.
    Kuypers LC; Decraemer WF; Dirckx JJ; Timmermans JP
    J Assoc Res Otolaryngol; 2005 Sep; 6(3):223-33. PubMed ID: 15983727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy.
    Kuypers LC; Decraemer WF; Dirckx JJ
    Otol Neurotol; 2006 Feb; 27(2):256-64. PubMed ID: 16436998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thickness of the gerbil tympanic membrane measured with confocal microscopy.
    Kuypers LC; Dirckx JJ; Decraemer WF; Timmermans JP
    Hear Res; 2005 Nov; 209(1-2):42-52. PubMed ID: 16054789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography.
    Van der Jeught S; Dirckx JJ; Aerts JR; Bradu A; Podoleanu AG; Buytaert JA
    J Assoc Res Otolaryngol; 2013 Aug; 14(4):483-94. PubMed ID: 23673509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tympanic membrane: highly developed smooth muscle arrays in the annulus fibrosus of mustached bats.
    Henson OW; Henson MM
    J Assoc Res Otolaryngol; 2000 Aug; 1(1):25-32. PubMed ID: 11548235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A procedure to determine the correct thickness of an object with confocal microscopy in case of refractive index mismatch.
    Kuypers LC; Decraemer WF; Dirckx JJ; Timmermans JP
    J Microsc; 2005 Apr; 218(Pt 1):68-78. PubMed ID: 15817065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the connection between the tympanic membrane and the malleus.
    De Greef D; Goyens J; Pintelon I; Bogers JP; Van Rompaey V; Hamans E; Van de Heyning P; Dirckx JJJ
    Hear Res; 2016 Oct; 340():50-59. PubMed ID: 26701786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilizing confocal microscopy to measure refractive index of articular cartilage.
    Wang K; Wu J; Day RE; Kirk TB
    J Microsc; 2012 Dec; 248(3):281-91. PubMed ID: 23140377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the incorporation of moirĂ© shape measurements in finite-element models of the cat eardrum.
    Funnell WR; Decraemer WF
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):925-32. PubMed ID: 8759946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rabbit tympanic membrane thickness distribution obtained via optical coherence tomography.
    Livens P; Dirckx JJJ
    Hear Res; 2023 Mar; 429():108701. PubMed ID: 36680871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corneal thickness measurement by confocal microscopy, ultrasound, and scanning slit methods.
    McLaren JW; Nau CB; Erie JC; Bourne WM
    Am J Ophthalmol; 2004 Jun; 137(6):1011-20. PubMed ID: 15183784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of out-of-focus sample regions on the surface specificity of confocal Raman microscopy.
    Everall N
    Appl Spectrosc; 2008 Jun; 62(6):591-8. PubMed ID: 18559144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of the cat eardrum to static pressures: mobile versus immobile malleus.
    Ladak HM; Decraemer WF; Dirckx JJ; Funnell WR
    J Acoust Soc Am; 2004 Nov; 116(5):3008-21. PubMed ID: 15603146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible clinical implications of the structural variations between the tympanic membrane quadrants.
    Kassem F; Dagan O; Biadsee A; Masalha M; Nachmani A; Nageris B; Lee DJ; Ungar OJ; Handzel O
    Laryngoscope Investig Otolaryngol; 2022 Aug; 7(4):1164-1170. PubMed ID: 36000041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber Arrangement in the Rat Tympanic Membrane.
    Liu J; Agrawal SK; Ladak HM; Wan W
    Anat Rec (Hoboken); 2016 Nov; 299(11):1531-1539. PubMed ID: 27532441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A geometrically nonlinear finite-element model of the cat eardrum.
    Ladak HM; Funnell WR; Decraemer WF; Dirckx JJ
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):2859-68. PubMed ID: 16708944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-frequency finite-element modeling of the gerbil middle ear.
    Elkhouri N; Liu H; Funnell WR
    J Assoc Res Otolaryngol; 2006 Dec; 7(4):399-411. PubMed ID: 17043944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tympanic membrane boundary deformations derived from static displacements observed with computerized tomography in human and gerbil.
    Gea SL; Decraemer WF; Funnell WR; Dirckx JJ; Maier H
    J Assoc Res Otolaryngol; 2010 Mar; 11(1):1-17. PubMed ID: 19834763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging the human tympanic membrane using optical coherence tomography in vivo.
    Djalilian HR; Ridgway J; Tam M; Sepehr A; Chen Z; Wong BJ
    Otol Neurotol; 2008 Dec; 29(8):1091-4. PubMed ID: 18957904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.