BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 15983872)

  • 1. Grass evolution inferred from chromosomal rearrangements and geometrical and statistical features in RNA structure.
    Caetano-Anollés G
    J Mol Evol; 2005 May; 60(5):635-52. PubMed ID: 15983872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolved RNA secondary structure and the rooting of the universal tree of life.
    Caetano-Anollés G
    J Mol Evol; 2002 Mar; 54(3):333-45. PubMed ID: 11847559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent sequence exchange between homeologous grass chromosomes.
    Wicker T; Wing RA; Schubert I
    Plant J; 2015 Nov; 84(4):747-59. PubMed ID: 26408412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Pharus latifolius genome bridges the gap of early grass evolution.
    Ma PF; Liu YL; Jin GH; Liu JX; Wu H; He J; Guo ZH; Li DZ
    Plant Cell; 2021 May; 33(4):846-864. PubMed ID: 33630094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System.
    Sharma A; Sharma N; Bhalla P; Singh M
    PLoS One; 2017; 12(1):e0169686. PubMed ID: 28103252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phylogeny of the BEP clade in grasses revisited: evidence from the whole-genome sequences of chloroplasts.
    Wu ZQ; Ge S
    Mol Phylogenet Evol; 2012 Jan; 62(1):573-8. PubMed ID: 22093967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data.
    Zhang W
    Mol Phylogenet Evol; 2000 Apr; 15(1):135-46. PubMed ID: 10764541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Alignment Spanning Major Poaceae Lineages Reveals Heterogeneous Evolutionary Rates and Alters Inferred Dates for Key Evolutionary Events.
    Wang X; Wang J; Jin D; Guo H; Lee TH; Liu T; Paterson AH
    Mol Plant; 2015 Jun; 8(6):885-98. PubMed ID: 25896453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution.
    Feuillet C; Keller B
    Ann Bot; 2002 Jan; 89(1):3-10. PubMed ID: 12096816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic reconstruction using secondary structures of Internal Transcribed Spacer 2 (ITS2, rDNA): finding the molecular and morphological gap in Caribbean gorgonian corals.
    Grajales A; Aguilar C; Sánchez JA
    BMC Evol Biol; 2007 Jun; 7():90. PubMed ID: 17562014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Foundations of the new phylogenetics].
    Pavlinov IIa
    Zh Obshch Biol; 2004; 65(4):334-66. PubMed ID: 15490579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The unique genome of two-chromosome grasses Zingeria and Colpodium, its origin, and evolution].
    Kim ES; Bol'sheva NL; Samatadze TE; Nosov NN; Nosova IV; Zelenin AV; Punina EO; Muravenko OV; Rodionov AV
    Genetika; 2009 Nov; 45(11):1506-15. PubMed ID: 20058797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the beta-amylase gene in the temperate grasses: Non-purifying selection, recombination, semiparalogy, homeology and phylogenetic signal.
    Minaya M; Díaz-Pérez A; Mason-Gamer R; Pimentel M; Catalán P
    Mol Phylogenet Evol; 2015 Oct; 91():68-85. PubMed ID: 26032971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic relationships and evolutionary history of the reef fish family Labridae.
    Westneat MW; Alfaro ME
    Mol Phylogenet Evol; 2005 Aug; 36(2):370-90. PubMed ID: 15955516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sixty million years in evolution of soft grain trait in grasses: emergence of the softness locus in the common ancestor of Pooideae and Ehrhartoideae, after their divergence from Panicoideae.
    Charles M; Tang H; Belcram H; Paterson A; Gornicki P; Chalhoub B
    Mol Biol Evol; 2009 Jul; 26(7):1651-61. PubMed ID: 19395588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae).
    Mahelka V; Kopecky D; Baum BR
    Mol Biol Evol; 2013 Sep; 30(9):2065-86. PubMed ID: 23741054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution.
    Davidson RM; Gowda M; Moghe G; Lin H; Vaillancourt B; Shiu SH; Jiang N; Robin Buell C
    Plant J; 2012 Aug; 71(3):492-502. PubMed ID: 22443345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots.
    Hsiao C; Chatterton NJ; Asay KH; Jensen KB
    Genome; 1994 Feb; 37(1):112-20. PubMed ID: 8181731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 'inner circle' of the cereal genomes.
    Bolot S; Abrouk M; Masood-Quraishi U; Stein N; Messing J; Feuillet C; Salse J
    Curr Opin Plant Biol; 2009 Apr; 12(2):119-25. PubMed ID: 19095493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the RNA polymerase B' subunit gene (rpoB') in Halobacteriales: a complementary molecular marker to the SSU rRNA gene.
    Walsh DA; Bapteste E; Kamekura M; Doolittle WF
    Mol Biol Evol; 2004 Dec; 21(12):2340-51. PubMed ID: 15356285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.