These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 15983989)

  • 1. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media.
    Oliveira NT; Biaggio SR; Rocha-Filho RC; Bocchi N
    J Biomed Mater Res A; 2005 Sep; 74(3):397-407. PubMed ID: 15983989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the in vitro corrosion behavior and biocompatibility of Zr-2.5Nb and Zr-1.5Nb-1Ta (at%) crystalline alloys.
    Rosalbino F; Macciò D; Giannoni P; Quarto R; Saccone A
    J Mater Sci Mater Med; 2011 May; 22(5):1293-302. PubMed ID: 21461699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.
    Ito A; Okazaki Y; Tateishi T; Ito Y
    J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical behavior of near-beta titanium biomedical alloys in phosphate buffer saline solution.
    Dalmau A; Guiñón Pina V; Devesa F; Amigó V; Igual Muñoz A
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():55-62. PubMed ID: 25579896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of titanium base alloys-biofluids interface.
    Popa MV; Demetrescu I; Suh SH; Vasilescu E; Drob P; Ionita D; Vasilescu C
    Bioelectrochemistry; 2007 Nov; 71(2):126-34. PubMed ID: 17409027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical corrosion of titanium and titanium-based alloys.
    Kuphasuk C; Oshida Y; Andres CJ; Hovijitra ST; Barco MT; Brown DT
    J Prosthet Dent; 2001 Feb; 85(2):195-202. PubMed ID: 11208211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Corrosiveness of Ti-Fe-Mo-Mn-Nb-Zr alloys in various pH lactic acids].
    Yu S; Zhang X; He Z; Liu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Feb; 22(1):91-4. PubMed ID: 15762124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrosion behavior of a low modulus beta-Ti-45%Nb alloy for use in medical implants.
    Godley R; Starosvetsky D; Gotman I
    J Mater Sci Mater Med; 2006 Jan; 17(1):63-7. PubMed ID: 16389473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
    Oliveira NT; Guastaldi AC
    Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.
    Zhou FY; Qiu KJ; Li HF; Huang T; Wang BL; Li L; Zheng YF
    Acta Biomater; 2013 Dec; 9(12):9578-87. PubMed ID: 23928334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New titanium alloys for biomaterials: a study of mechanical and corrosion properties and cytotoxicity.
    Kim TI; Han JH; Lee IS; Lee KH; Shin MC; Choi BB
    Biomed Mater Eng; 1997; 7(4):253-63. PubMed ID: 9408577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of corrosion resistance of implant-use Ti-Zr binary alloys with a range of compositions.
    Akimoto T; Ueno T; Tsutsumi Y; Doi H; Hanawa T; Wakabayashi N
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):73-79. PubMed ID: 27860159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.
    Okazaki Y; Rao S; Ito Y; Tateishi T
    Biomaterials; 1998 Jul; 19(13):1197-215. PubMed ID: 9720903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vitro corrosion and wear of titanium alloys in the biological environment.
    Khan MA; Williams RL; Williams DF
    Biomaterials; 1996 Nov; 17(22):2117-26. PubMed ID: 8922597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications.
    Samuel S; Nag S; Nasrazadani S; Ukirde V; El Bouanani M; Mohandas A; Nguyen K; Banerjee R
    J Biomed Mater Res A; 2010 Sep; 94(4):1251-6. PubMed ID: 20694992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications.
    Nnamchi PS; Obayi CS; Todd I; Rainforth MW
    J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing new biocompatible glass-forming Ti75-x Zr10 Nbx Si15 (x = 0, 15) alloys: corrosion, passivity, and apatite formation.
    Abdi S; Oswald S; Gostin PF; Helth A; Sort J; Baró MD; Calin M; Schultz L; Eckert J; Gebert A
    J Biomed Mater Res B Appl Biomater; 2016 Jan; 104(1):27-38. PubMed ID: 25611821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of titanium-tantalum and titanium-niobium alloys for application as dental implants.
    Breme J; Wadewitz V
    Int J Oral Maxillofac Implants; 1989; 4(2):113-8. PubMed ID: 2599582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection and evaluation of blood- and tribologically compatible journal bearing materials.
    Murray SF; Calabrese SJ; Malanoski SB; Golding LR; Smith WA; Hamby M
    ASAIO J; 1997; 43(5):M603-8. PubMed ID: 9360116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strengthening mechanism and corrosion resistance of beta-type Ti-Nb-Zr-Mn alloys.
    Jawed SF; Rabadia CD; Liu YJ; Wang LQ; Qin P; Li YH; Zhang XH; Zhang LC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110728. PubMed ID: 32204038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.