These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 15984167)
1. Participation of the ubiquitin-proteasome pathway in rat oocyte activation. Tan X; Peng A; Wang YC; Wang Y; Sun QY Zygote; 2005 Feb; 13(1):87-95. PubMed ID: 15984167 [TBL] [Abstract][Full Text] [Related]
2. Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Huo LJ; Fan HY; Zhong ZS; Chen DY; Schatten H; Sun QY Mech Dev; 2004 Oct; 121(10):1275-87. PubMed ID: 15327787 [TBL] [Abstract][Full Text] [Related]
3. Regulation of ubiquitin-proteasome pathway on pig oocyte meiotic maturation and fertilization. Huo LJ; Fan HY; Liang CG; Yu LZ; Zhong ZS; Chen DY; Sun QY Biol Reprod; 2004 Sep; 71(3):853-62. PubMed ID: 15115724 [TBL] [Abstract][Full Text] [Related]
4. The effects of proteasome inhibitor lactacystin on mouse oocyte meiosis and first cleavage. Tan X; Peng A; Wang Y; Tang Z Sci China C Life Sci; 2005 Jun; 48(3):287-94. PubMed ID: 16092762 [TBL] [Abstract][Full Text] [Related]
5. The proteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes. Josefsberg LB; Galiani D; Dantes A; Amsterdam A; Dekel N Biol Reprod; 2000 May; 62(5):1270-7. PubMed ID: 10775176 [TBL] [Abstract][Full Text] [Related]
6. Proteolytic activity of the 26S proteasome is required for the meiotic resumption, germinal vesicle breakdown, and cumulus expansion of porcine cumulus-oocyte complexes matured in vitro. Yi YJ; Nagyova E; Manandhar G; Procházka R; Sutovsky M; Park CS; Sutovsky P Biol Reprod; 2008 Jan; 78(1):115-26. PubMed ID: 17942798 [TBL] [Abstract][Full Text] [Related]
7. Degradation of securin in mouse and pig oocytes is dependent on ubiquitin-proteasome pathway and is required for proteolysis of the cohesion subunit, Rec8, at the metaphase-to-anaphase transition. Huo LJ; Zhong ZS; Liang CG; Wang Q; Yin S; Ai JS; Yu LZ; Chen DY; Schatten H; Sun QY Front Biosci; 2006 Sep; 11():2193-202. PubMed ID: 16720305 [TBL] [Abstract][Full Text] [Related]
8. Rotation of meiotic spindle is controlled by microfilaments in mouse oocytes. Zhu ZY; Chen DY; Li JS; Lian L; Lei L; Han ZM; Sun QY Biol Reprod; 2003 Mar; 68(3):943-6. PubMed ID: 12604646 [TBL] [Abstract][Full Text] [Related]
9. Cytostatic activity develops during meiosis I in oocytes of LT/Sv mice. Ciemerych MA; Kubiak JZ Dev Biol; 1998 Aug; 200(2):198-211. PubMed ID: 9705227 [TBL] [Abstract][Full Text] [Related]
10. From ubiquitin-proteasomal degradation to CDK1 inactivation: requirements for the first polar body extrusion in mouse oocytes. Pomerantz Y; Elbaz J; Ben-Eliezer I; Reizel Y; David Y; Galiani D; Nevo N; Navon A; Dekel N FASEB J; 2012 Nov; 26(11):4495-505. PubMed ID: 22859367 [TBL] [Abstract][Full Text] [Related]
11. Differential regulation of cyclin B1 degradation between the first and second meiotic divisions of bovine oocytes. Liu W; Yin J; Zhao G; Yun Y; Wu S; Jones KT; Lei A Theriogenology; 2012 Oct; 78(6):1171-81.e1. PubMed ID: 22901768 [TBL] [Abstract][Full Text] [Related]
12. Cell-cycle-dependent subcellular localization of cyclin B1, phosphorylated cyclin B1 and p34cdc2 during oocyte meiotic maturation and fertilization in mouse. Huo LJ; Yu LZ; Liang CG; Fan HY; Chen DY; Sun QY Zygote; 2005 Feb; 13(1):45-53. PubMed ID: 15984162 [TBL] [Abstract][Full Text] [Related]
13. Effect of proteasome inhibitor MG132 on in vitro maturation of pig oocytes. Chmelíková E; Sedmíkova M; Rajmon R; Petr J; Svestková D; Jílek F Zygote; 2004 May; 12(2):157-62. PubMed ID: 15460111 [TBL] [Abstract][Full Text] [Related]
14. Overcoming MIII arrest from spontaneous activation in cultured rat oocytes. Galat V; Zhou Y; Taborn G; Garton R; Iannaccone P Cloning Stem Cells; 2007; 9(3):303-14. PubMed ID: 17907941 [TBL] [Abstract][Full Text] [Related]
15. Artificial parthenogenesis in starfish eggs: behavior of nuclei and chromosomes resulting in tetraploidy of parthenogenotes produced by the suppression of polar body extrusion. Washitani-Nemoto S; Saitoh C; Nemoto S Dev Biol; 1994 Jun; 163(2):293-301. PubMed ID: 8200472 [TBL] [Abstract][Full Text] [Related]
16. Regulatory roles of ubiquitin-proteasome pathway in pig oocyte meiotic maturation and fertilization. Sun QY; Fuchimoto D; Nagai T Theriogenology; 2004 Jul; 62(1-2):245-55. PubMed ID: 15159117 [TBL] [Abstract][Full Text] [Related]
17. [Dynamic changes of microtubule in parthenogenetic and in vitro fertilized preimplantation embryos in mouse.]. Feng XQ; Lin YW; Chen YJ; Zhong SQ; Yan XF; Dong JJ; Lei L Sheng Li Xue Bao; 2008 Feb; 60(1):113-8. PubMed ID: 18288366 [TBL] [Abstract][Full Text] [Related]
18. Mitogen-activated protein kinase regulates normal transition from metaphase to interphase following parthenogenetic activation in porcine oocytes. Tatemoto H; Muto N Zygote; 2001 Feb; 9(1):15-23. PubMed ID: 11273030 [TBL] [Abstract][Full Text] [Related]
19. Involvement of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes. Fan HY; Huo LJ; Meng XQ; Zhong ZS; Hou Y; Chen DY; Sun QY Biol Reprod; 2003 Nov; 69(5):1552-64. PubMed ID: 12826587 [TBL] [Abstract][Full Text] [Related]
20. Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest. Kubiak JZ Dev Biol; 1989 Dec; 136(2):537-45. PubMed ID: 2583375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]