These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15984571)

  • 1. Fungal degradation of calcium-, lead- and silicon-bearing minerals.
    Adeyemi AO; Gadd GM
    Biometals; 2005 Jun; 18(3):269-81. PubMed ID: 15984571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubilisation of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger.
    Sayer JA; Kierans M; Gadd GM
    FEMS Microbiol Lett; 1997 Sep; 154(1):29-35. PubMed ID: 9297818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen.
    Pinzari F; Tate J; Bicchieri M; Rhee YJ; Gadd GM
    Environ Microbiol; 2013 Apr; 15(4):1050-62. PubMed ID: 23157656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations.
    Ceci A; Kierans M; Hillier S; Persiani AM; Gadd GM
    Appl Environ Microbiol; 2015 Aug; 81(15):4955-64. PubMed ID: 25979898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal biotransformation of zinc silicate and sulfide mineral ores.
    Wei Z; Liang X; Pendlowski H; Hillier S; Suntornvongsagul K; Sihanonth P; Gadd GM
    Environ Microbiol; 2013 Aug; 15(8):2173-86. PubMed ID: 23419112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Formation of Aspergillus niger-mineral aggregation and characterization of polysaccharide from aggregation].
    Hu J; Lian B; Yu J; Hu X
    Wei Sheng Wu Xue Bao; 2011 Jun; 51(6):756-63. PubMed ID: 21866699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals.
    Wei Z; Hillier S; Gadd GM
    Environ Microbiol; 2012 Jul; 14(7):1744-53. PubMed ID: 22591055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic Force Microscopy of the fungi-mineral interface: applications in mineral dissolution, weathering and biogeochemistry.
    McMaster TJ
    Curr Opin Biotechnol; 2012 Aug; 23(4):562-9. PubMed ID: 22819645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of vanadinite [Pb5 (VO4 )3 Cl] by fungi.
    Ceci A; Rhee YJ; Kierans M; Hillier S; Pendlowski H; Gray N; Persiani AM; Gadd GM
    Environ Microbiol; 2015 Jun; 17(6):2018-34. PubMed ID: 25181352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lead transformation to pyromorphite by fungi.
    Rhee YJ; Hillier S; Gadd GM
    Curr Biol; 2012 Feb; 22(3):237-41. PubMed ID: 22245002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi.
    Fomina M; Charnock J; Bowen AD; Gadd GM
    Environ Microbiol; 2007 Feb; 9(2):308-21. PubMed ID: 17222130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeleton bones in museum indoor environments offer niches for fungi and are affected by weathering and deposition of secondary minerals.
    Pinzari F; Cornish L; Jungblut AD
    Environ Microbiol; 2020 Jan; 22(1):59-75. PubMed ID: 31599093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation.
    Tang Y; Zeiner CA; Santelli CM; Hansel CM
    Environ Microbiol; 2013 Apr; 15(4):1063-77. PubMed ID: 23157705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Mineral-Doped Micromodel Platform Demonstrates Fungal Bridging of Carbon Hot Spots and Hyphal Transport of Mineral-Derived Nutrients.
    Bhattacharjee A; Qafoku O; Richardson JA; Anderson LN; Schwarz K; Bramer LM; Lomas GX; Orton DJ; Zhu Z; Engelhard MH; Bowden ME; Nelson WC; Jumpponen A; Jansson JK; Hofmockel KS; Anderton CR
    mSystems; 2022 Dec; 7(6):e0091322. PubMed ID: 36394319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals.
    Schmalenberger A; Duran AL; Bray AW; Bridge J; Bonneville S; Benning LG; Romero-Gonzalez ME; Leake JR; Banwart SA
    Sci Rep; 2015 Jul; 5():12187. PubMed ID: 26197714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct Mineral Weathering Behaviors of the Novel Mineral-Weathering Strains Rhizobium yantingense H66 and Rhizobium etli CFN42.
    Chen W; Luo L; He LY; Wang Q; Sheng XF
    Appl Environ Microbiol; 2016 Jul; 82(14):4090-4099. PubMed ID: 27129959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphatase-mediated bioprecipitation of lead by soil fungi.
    Liang X; Kierans M; Ceci A; Hillier S; Gadd GM
    Environ Microbiol; 2016 Jan; 18(1):219-31. PubMed ID: 26235107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Induced synthesis of hydroxyapatite by Aspergillus niger].
    He F; Lian B; Liu S; Gong G
    Wei Sheng Wu Xue Bao; 2011 Mar; 51(3):417-22. PubMed ID: 21604557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant-driven weathering of apatite--the role of an ectomycorrhizal fungus.
    Smits MM; Bonneville S; Benning LG; Banwart SA; Leake JR
    Geobiology; 2012 Sep; 10(5):445-56. PubMed ID: 22624799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal transformation of metallic lead to pyromorphite in liquid medium.
    Rhee YJ; Hillier S; Pendlowski H; Gadd GM
    Chemosphere; 2014 Oct; 113():17-21. PubMed ID: 25065784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.