These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 15984777)
1. Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions. Li X; Zhang P; Lin CL; Johnson WP Environ Sci Technol; 2005 Jun; 39(11):4012-20. PubMed ID: 15984777 [TBL] [Abstract][Full Text] [Related]
2. Observed and simulated fluid drag effects on colloid deposition in the presence of an energy barrier in an impinging jet system. Johnson WP; Tong M Environ Sci Technol; 2006 Aug; 40(16):5015-21. PubMed ID: 16955901 [TBL] [Abstract][Full Text] [Related]
3. Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: a general phenomenon. Li X; Scheibe TD; Johnson WP Environ Sci Technol; 2004 Nov; 38(21):5616-25. PubMed ID: 15575280 [TBL] [Abstract][Full Text] [Related]
4. Pore-scale observation of microsphere deposition at grain-to-grain contacts over assemblage-scale porous media domains using X-ray microtomography. Li X; Lin CL; Miller JD; Johnson WP Environ Sci Technol; 2006 Jun; 40(12):3762-8. PubMed ID: 16830539 [TBL] [Abstract][Full Text] [Related]
5. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry. Torkzaban S; Kim HN; Simunek J; Bradford SA Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144 [TBL] [Abstract][Full Text] [Related]
6. Funneling of flow into grain-to-grain contacts drives colloid-colloid aggregation in the presence of an energy barrier. Tong M; ma H; Johnson WP Environ Sci Technol; 2008 Apr; 42(8):2826-32. PubMed ID: 18497130 [TBL] [Abstract][Full Text] [Related]
7. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Bradford SA; Torkzaban S; Walker SL Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302 [TBL] [Abstract][Full Text] [Related]
8. Nonmonotonic variations in deposition rate coefficients of microspheres in porous media under unfavorable deposition conditions. Li X; Johnson WP Environ Sci Technol; 2005 Mar; 39(6):1658-65. PubMed ID: 15819222 [TBL] [Abstract][Full Text] [Related]
9. Role of grain-to-grain contacts on profiles of retained colloids in porous media in the presence of an energy barrier to deposition. Li X; Lin CL; Miller JD; Johnson WP Environ Sci Technol; 2006 Jun; 40(12):3769-74. PubMed ID: 16830540 [TBL] [Abstract][Full Text] [Related]
10. Colloid population heterogeneity drives hyperexponential deviation from classic filtration theory. Tong M; Johnson WP Environ Sci Technol; 2007 Jan; 41(2):493-9. PubMed ID: 17310712 [TBL] [Abstract][Full Text] [Related]
11. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. Torkzaban S; Bradford SA; van Genuchten MT; Walker SL J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262 [TBL] [Abstract][Full Text] [Related]
12. Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Tong M; Joainson WP Environ Sci Technol; 2006 Dec; 40(24):7725-31. PubMed ID: 17256519 [TBL] [Abstract][Full Text] [Related]
13. Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media. Tian Y; Gao B; Wu L; Muñoz-Carpena R; Huang Q J Hazard Mater; 2012 Sep; 231-232():79-87. PubMed ID: 22776831 [TBL] [Abstract][Full Text] [Related]
14. Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition. Tufenkji N; Elimelech M Environ Sci Technol; 2005 May; 39(10):3620-9. PubMed ID: 15952366 [TBL] [Abstract][Full Text] [Related]
15. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand. Cai L; Peng S; Wu D; Tong M Environ Pollut; 2016 Jan; 208(Pt B):637-44. PubMed ID: 26561451 [TBL] [Abstract][Full Text] [Related]
16. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Hahn MW; O'Meliae CR Environ Sci Technol; 2004 Jan; 38(1):210-20. PubMed ID: 14740738 [TBL] [Abstract][Full Text] [Related]
17. Effect of gravity on colloid transport through water-saturated columns packed with glass beads: modeling and experiments. Chrysikopoulos CV; Syngouna VI Environ Sci Technol; 2014 Jun; 48(12):6805-13. PubMed ID: 24857560 [TBL] [Abstract][Full Text] [Related]
18. Aquasols: on the role of secondary minima. Hahn MW; Abadzic D; O'Melia CR Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589 [TBL] [Abstract][Full Text] [Related]
19. Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers. Ma H; Pazmino E; Johnson WP Langmuir; 2011 Dec; 27(24):14982-94. PubMed ID: 22044388 [TBL] [Abstract][Full Text] [Related]
20. Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration. Tufenkji N; Miller GF; Ryan JN; Harvey RW; Elimelech M Environ Sci Technol; 2004 Nov; 38(22):5932-8. PubMed ID: 15573591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]