These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15984777)

  • 21. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.
    Tong M; Camesano TA; Johnson WP
    Environ Sci Technol; 2005 May; 39(10):3679-87. PubMed ID: 15952372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media.
    Kim HN; Walker SL; Bradford SA
    Water Res; 2010 Feb; 44(4):1213-23. PubMed ID: 19854467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale.
    Seetha N; Raoof A; Mohan Kumar MS; Majid Hassanizadeh S
    J Contam Hydrol; 2017 May; 200():1-14. PubMed ID: 28366612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers.
    Pazmino EF; Ma H; Johnson WP
    Environ Sci Technol; 2011 Dec; 45(24):10401-7. PubMed ID: 22029252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media.
    Peng S; Wu D; Ge Z; Tong M; Kim H
    Environ Pollut; 2017 Jun; 225():141-149. PubMed ID: 28365511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facilitated attachment of nanoparticles at primary minima by nanoscale roughness is susceptible to hydrodynamic drag under unfavorable chemical conditions.
    Shen C; Jin Y; Li B; Zheng W; Huang Y
    Sci Total Environ; 2014 Jan; 466-467():1094-102. PubMed ID: 24013017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noninvasive quantitative measurement of colloid transport in mesoscale porous media using time lapse fluorescence imaging.
    Bridge JW; Banwart SA; Heathwaite AL
    Environ Sci Technol; 2006 Oct; 40(19):5930-6. PubMed ID: 17051781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Colloid transport in a geochemically heterogeneous porous medium: aquifer tank experiment and modeling.
    Loveland JP; Bhattacharjee S; Ryan JN; Elimelech M
    J Contam Hydrol; 2003 Sep; 65(3-4):161-82. PubMed ID: 12935948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Colloid transport with wetting fronts: interactive effects of solution surface tension and ionic strength.
    Zhuang J; Goeppert N; Tu C; McCarthy J; Perfect E; McKay L
    Water Res; 2010 Feb; 44(4):1270-8. PubMed ID: 20056511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical approach to model multilayer colloidal deposition in porous media.
    Kulkarni P; Sureshkumar R; Biswas P
    Environ Sci Technol; 2005 Sep; 39(17):6361-70. PubMed ID: 16190188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media.
    Franchi A; O'Melia CR
    Environ Sci Technol; 2003 Mar; 37(6):1122-9. PubMed ID: 12680664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distance and flow effects on microsphere transport in a large gravel column.
    Close ME; Pang L; Flintoft MJ; Sinton LW
    J Environ Qual; 2006; 35(4):1204-12. PubMed ID: 16825440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colloid transport and deposition in water-saturated Yucca Mountain tuff as determined by ionic strength.
    Gamerdinger AP; Kaplan DI
    Environ Sci Technol; 2001 Aug; 35(16):3326-31. PubMed ID: 11529572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retention and transport of amphiphilic colloids under unsaturated flow conditions: effect of particle size and surface property.
    Zhuang J; Qi J; Jin Y
    Environ Sci Technol; 2005 Oct; 39(20):7853-9. PubMed ID: 16295847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colloid retention at the meniscus-wall contact line in an open microchannel.
    Zevi Y; Gao B; Zhang W; Morales VL; Cakmak ME; Medrano EA; Sang W; Steenhuis TS
    Water Res; 2012 Feb; 46(2):295-306. PubMed ID: 22130000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct observations of colloid retention in granular media in the presence of energy barriers, and implications for inferred mechanisms from indirect observations.
    Johnson WP; Pazmino E; Ma H
    Water Res; 2010 Feb; 44(4):1158-69. PubMed ID: 20132959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interfacial interactions and colloid retention under steady flows in a capillary channel.
    Lazouskaya V; Jin Y; Or D
    J Colloid Interface Sci; 2006 Nov; 303(1):171-84. PubMed ID: 16930611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport and deposition of CeO2 nanoparticles in water-saturated porous media.
    Li Z; Sahle-Demessie E; Hassan AA; Sorial GA
    Water Res; 2011 Oct; 45(15):4409-18. PubMed ID: 21708395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Why Variant Colloid Transport Behaviors Emerge among Identical Individuals in Porous Media When Colloid-Surface Repulsion Exists.
    Johnson WP; Rasmuson A; PazmiƱo E; Hilpert M
    Environ Sci Technol; 2018 Jul; 52(13):7230-7239. PubMed ID: 29888906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Colloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation.
    Johnson WP; Li X; Yal G
    Environ Sci Technol; 2007 Feb; 41(4):1279-87. PubMed ID: 17593731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.