These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 15984778)

  • 1. Understanding the difference in oxidative properties between flame and diesel soot nanoparticles: the role of metals.
    Kim SH; Fletcher RA; Zachariah MR
    Environ Sci Technol; 2005 Jun; 39(11):4021-6. PubMed ID: 15984778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of diesel engine combustion parameters on primary soot particle diameter.
    Mathis U; Mohr M; Kaegi R; Bertola A; Boulouchos K
    Environ Sci Technol; 2005 Mar; 39(6):1887-92. PubMed ID: 15819252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diesel engine exhaust emission: oxidative behavior and microstructure of black smoke soot particulate.
    Müller JO; Su DS; Jentoft RE; Wild U; Schlögl R
    Environ Sci Technol; 2006 Feb; 40(4):1231-6. PubMed ID: 16572780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of lower and higher alcohol additions to diesel on the combustion and emissions of a direct-injection diesel engine.
    Li X; Guan C; Yang K; Cheung CS; Huang Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):21001-21012. PubMed ID: 31115816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of diesel oxidation catalysts on the diesel particulate filter regeneration process.
    Lizarraga L; Souentie S; Boreave A; George C; D'Anna B; Vernoux P
    Environ Sci Technol; 2011 Dec; 45(24):10591-7. PubMed ID: 22050688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of diesel nanoparticle oxidation.
    Higgins KJ; Jung H; Kittelson DB; Roberts JT; Zachariah MR
    Environ Sci Technol; 2003 May; 37(9):1949-54. PubMed ID: 12775070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of oxidation catalysts on diesel soot particles.
    Vaaraslahti K; Ristimäki J; Virtanen A; Keskinen J; Giechaskiel B; Solla A
    Environ Sci Technol; 2006 Aug; 40(15):4776-81. PubMed ID: 16913138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties and oxidation of exhaust particulates from dual fuel combustion: A comparative study of premixed gasoline, n-butanol and their blends.
    Wang X; Wang Y; Bai Y; Duan Q
    Environ Pollut; 2021 Feb; 271():116391. PubMed ID: 33385888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine.
    Maurya RK; Saxena MR; Rai P; Bhardwaj A
    Environ Sci Pollut Res Int; 2018 May; 25(15):14674-14689. PubMed ID: 29532381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective.
    Liati A; Schreiber D; Arroyo Rojas Dasilva Y; Dimopoulos Eggenschwiler P
    Environ Pollut; 2018 Aug; 239():661-669. PubMed ID: 29709837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine.
    Dyke PH; Sutton M; Wood D; Marshall J
    Chemosphere; 2007 Apr; 67(7):1275-86. PubMed ID: 17254630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends.
    Lamani VT; Yadav AK; Gottekere KN
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23351-23362. PubMed ID: 28840441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine.
    Miller AL; Stipe CB; Habjan MC; Ahlstrand GG
    Environ Sci Technol; 2007 Oct; 41(19):6828-35. PubMed ID: 17969702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of accelerating soot oxidation by NO
    Li Z; Zhang W; Chen Z; Jiang Q
    Environ Pollut; 2020 Sep; 264():114708. PubMed ID: 32402712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of nanoparticles of organic carbon and soot in flames and vehicle exhausts.
    Sgro LA; Borghese A; Speranza L; Barone AC; Minutolo P; Bruno A; D'Anna A; D'Alessio A
    Environ Sci Technol; 2008 Feb; 42(3):859-63. PubMed ID: 18323113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the reaction kinetics of diesel exhaust soot during oxidation process.
    Qiao Y; Wang C; Lyu G; Jing Z; Li Y; Song C
    Chemosphere; 2023 Jan; 311(Pt 1):136980. PubMed ID: 36283428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.
    Bugarski AD; Hummer JA; Stachulak JS; Miller A; Patts LD; Cauda EG
    Ann Occup Hyg; 2016 Mar; 60(2):252-62. PubMed ID: 26424805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of light absorption and oxidative potential of biodiesel/diesel and chemicals/diesel blends soot particles.
    Kuang Y; Guo Y; Chai J; Shang J; Zhu J; Stevanovic S; Ristovski Z
    J Environ Sci (China); 2020 Jan; 87():184-193. PubMed ID: 31791491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic effect of diesel PM derived ash on PM oxidation activity.
    Gao J; Wang Y; Li X; Wang S; Ma C; Wang X
    Chemosphere; 2022 Jul; 299():134445. PubMed ID: 35364086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of fuel injection timing and pressure on in-flame soot particles in an automotive-size diesel engine.
    Zhang R; Kook S
    Environ Sci Technol; 2014 Jul; 48(14):8243-50. PubMed ID: 24933154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.