BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 15984857)

  • 21. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation.
    Dimitratos N; Lopez-Sanchez JA; Morgan D; Carley AF; Tiruvalam R; Kiely CJ; Bethell D; Hutchings GJ
    Phys Chem Chem Phys; 2009 Jul; 11(25):5142-53. PubMed ID: 19562147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magic numbers of gold clusters stabilized by PVP.
    Tsunoyama H; Tsukuda T
    J Am Chem Soc; 2009 Dec; 131(51):18216-7. PubMed ID: 19968278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of Au/Pt bimetallic nanoparticles with a Pt-rich shell and their high catalytic activities for aerobic glucose oxidation.
    Zhang H; Toshima N
    J Colloid Interface Sci; 2013 Mar; 394():166-76. PubMed ID: 23290434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multimetallic arrays: bi-, tri-, tetra-, and hexametallic complexes based on gold(I) and gold(III) and the surface functionalization of gold nanoparticles with transition metals.
    Knight ER; Leung NH; Thompson AL; Hogarth G; Wilton-Ely JD
    Inorg Chem; 2009 Apr; 48(8):3866-74. PubMed ID: 19296612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and catalytic activity of poly(N-vinyl-2-pyrrolidone)-protected Au nanoparticles for the aerobic oxidation of glucose.
    Zhang H; Li W; Gu Y; Zhang S
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5743-51. PubMed ID: 25935998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cryogenic CO oxidation on TiO(2)-supported gold nanoclusters precovered with atomic oxygen.
    Kim TS; Stiehl JD; Reeves CT; Meyer RJ; Mullins CB
    J Am Chem Soc; 2003 Feb; 125(8):2018-9. PubMed ID: 12590508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition.
    Harding C; Habibpour V; Kunz S; Farnbacher AN; Heiz U; Yoon B; Landman U
    J Am Chem Soc; 2009 Jan; 131(2):538-48. PubMed ID: 19140792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic study of a direct water synthesis over silica-supported gold nanoparticles.
    Barton DG; Podkolzin SG
    J Phys Chem B; 2005 Feb; 109(6):2262-74. PubMed ID: 16851219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions.
    Wang X; Liu R; Jin Y; Liang X
    Chemistry; 2008; 14(9):2679-85. PubMed ID: 18293352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonscalable oxidation catalysis of gold clusters.
    Yamazoe S; Koyasu K; Tsukuda T
    Acc Chem Res; 2014 Mar; 47(3):816-24. PubMed ID: 24350598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray-induced production of gold nanoparticles on a SiO(2)/Si system and in a poly(methyl methacrylate) matrix.
    Karadas F; Ertas G; Ozkaraoglu E; Suzer S
    Langmuir; 2005 Jan; 21(1):437-42. PubMed ID: 15620336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zeolite-confined Nano-RuO(2): A green, selective, and efficient catalyst for aerobic alcohol oxidation.
    Zhan BZ; White MA; Sham TK; Pincock JA; Doucet RJ; Rao KV; Robertson KN; Cameron TS
    J Am Chem Soc; 2003 Feb; 125(8):2195-9. PubMed ID: 12590547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters.
    Zhang H; Wang L; Lu L; Toshima N
    Sci Rep; 2016 Aug; 6():30752. PubMed ID: 27476577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols.
    Li L; Dou L; Zhang H
    Nanoscale; 2014 Apr; 6(7):3753-63. PubMed ID: 24573343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyrrolidone-modified SBA-15 supported Au nanoparticles with superior catalytic properties in aerobic oxidation of alcohols.
    Wang L; Meng X; Wang B; Chi W; Xiao FS
    Chem Commun (Camb); 2010 Jul; 46(27):5003-5. PubMed ID: 20520914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface.
    Chrétien S; Metiu H
    J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone).
    Lim B; Camargo PH; Xia Y
    Langmuir; 2008 Sep; 24(18):10437-42. PubMed ID: 18712890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capillary electrophoresis, mass spectrometry, and UV-visible absorption studies on electrolyte-induced fractionation of gold nanoclusters.
    Lo CK; Paau MC; Xiao D; Choi MM
    Anal Chem; 2008 Apr; 80(7):2439-46. PubMed ID: 18324792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(vinyl pyrrolidone)-capped five-fold twinned gold particles with sizes from nanometres to micrometres.
    Jiang P; Zhou JJ; Li R; Wang ZL; Xie SS
    Nanotechnology; 2006 Jul; 17(14):3533-8. PubMed ID: 19661601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.