These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 15985280)

  • 1. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation.
    Xu SY; Chen YX; Wu WX; Wang KX; Lin Q; Liang XQ
    Sci Total Environ; 2006 Jun; 363(1-3):206-15. PubMed ID: 15985280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation.
    Cheema SA; Imran Khan M; Shen C; Tang X; Farooq M; Chen L; Zhang C; Chen Y
    J Hazard Mater; 2010 May; 177(1-3):384-9. PubMed ID: 20079966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.).
    Xu SY; Chen YX; Lin Q; Wu WX; Xue SG; Shen CF
    J Environ Sci (China); 2005; 17(5):817-22. PubMed ID: 16313010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes.
    Lee SH; Lee WS; Lee CH; Kim JG
    J Hazard Mater; 2008 May; 153(1-2):892-8. PubMed ID: 17959304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene.
    Gao Y; Li Q; Ling W; Zhu X
    J Hazard Mater; 2011 Jan; 185(2-3):703-9. PubMed ID: 20956057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenanthrene and pyrene uptake by arbuscular mycorrhizal maize and their dissipation in soil.
    Wu FY; Yu XZ; Wu SC; Lin XG; Wong MH
    J Hazard Mater; 2011 Mar; 187(1-3):341-7. PubMed ID: 21282002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil.
    Gao Y; Yu XZ; Wu SC; Cheung KC; Tam NF; Qian PY; Wong MH
    Sci Total Environ; 2006 Dec; 372(1):1-11. PubMed ID: 17081596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation for phenanthrene and pyrene contaminated soils.
    Gao YZ; Zhu LZ
    J Environ Sci (China); 2005; 17(1):14-8. PubMed ID: 15900750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils.
    Gao Y; Zhu L
    Chemosphere; 2004 Jun; 55(9):1169-78. PubMed ID: 15081757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants.
    Ni H; Zhou W; Zhu L
    J Environ Sci (China); 2014 May; 26(5):1071-9. PubMed ID: 25079637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant.
    Gao Y; Ling W; Wong MH
    Chemosphere; 2006 Jun; 63(9):1560-7. PubMed ID: 16581106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa.
    Wang MC; Chen YT; Chen SH; Chang Chien SW; Sunkara SV
    Chemosphere; 2012 Apr; 87(3):217-25. PubMed ID: 22245074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea).
    Cheema SA; Khan MI; Tang X; Zhang C; Shen C; Malik Z; Ali S; Yang J; Shen K; Chen X; Chen Y
    J Hazard Mater; 2009 Jul; 166(2-3):1226-31. PubMed ID: 19150175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil.
    Chouychai W; Thongkukiatkul A; Upatham S; Lee H; Pokethitiyook P; Kruatrachue M
    J Environ Biol; 2009 Jan; 30(1):139-44. PubMed ID: 20112876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytotoxicity assay of crop plants to phenanthrene and pyrene contaminants in acidic soil.
    Chouychai W; Thongkukiatkul A; Upatham S; Lee H; Pokethitiyook P; Kruatrachue M
    Environ Toxicol; 2007 Dec; 22(6):597-604. PubMed ID: 18000845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique.
    Papadopoulos A; Reid BJ; Semple KT
    J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant uptake and enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) in spiked soils by different plant species.
    Li YW; Cai QY; Mo CH; Zeng QY; Lü H; Li QS; Xu GS
    Int J Phytoremediation; 2014; 16(6):609-20. PubMed ID: 24912246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat.
    Shahsavari E; Adetutu EM; Taha M; Ball AS
    J Environ Manage; 2015 May; 155():171-6. PubMed ID: 25819570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipation gradients of phenanthrene and pyrene in the Rice rhizosphere.
    Gao Y; Wu SC; Yu XZ; Wong MH
    Environ Pollut; 2010 Aug; 158(8):2596-603. PubMed ID: 20542360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.