BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 15985429)

  • 1. Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation.
    Hong F; Sekhar KR; Freeman ML; Liebler DC
    J Biol Chem; 2005 Sep; 280(36):31768-75. PubMed ID: 15985429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3.
    Rachakonda G; Xiong Y; Sekhar KR; Stamer SL; Liebler DC; Freeman ML
    Chem Res Toxicol; 2008 Mar; 21(3):705-10. PubMed ID: 18251510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway.
    Zhang DD; Lo SC; Sun Z; Habib GM; Lieberman MW; Hannink M
    J Biol Chem; 2005 Aug; 280(34):30091-9. PubMed ID: 15983046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.
    Kobayashi A; Kang MI; Okawa H; Ohtsuji M; Zenke Y; Chiba T; Igarashi K; Yamamoto M
    Mol Cell Biol; 2004 Aug; 24(16):7130-9. PubMed ID: 15282312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation.
    He X; Ma Q
    Mol Pharmacol; 2009 Dec; 76(6):1265-78. PubMed ID: 19786557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD; Lo SC; Cross JV; Templeton DJ; Hannink M
    Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein targets of reactive electrophiles in human liver microsomes.
    Shin NY; Liu Q; Stamer SL; Liebler DC
    Chem Res Toxicol; 2007 Jun; 20(6):859-67. PubMed ID: 17480101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2.
    Eggler AL; Liu G; Pezzuto JM; van Breemen RB; Mesecar AD
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10070-5. PubMed ID: 16006525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.
    Furukawa M; Xiong Y
    Mol Cell Biol; 2005 Jan; 25(1):162-71. PubMed ID: 15601839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2.
    He X; Ma Q
    J Pharmacol Exp Ther; 2010 Jan; 332(1):66-75. PubMed ID: 19808700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound.
    Ohnuma T; Nakayama S; Anan E; Nishiyama T; Ogura K; Hiratsuka A
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):27-36. PubMed ID: 20026152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase.
    Cullinan SB; Gordan JD; Jin J; Harper JW; Diehl JA
    Mol Cell Biol; 2004 Oct; 24(19):8477-86. PubMed ID: 15367669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sites of alkylation of human Keap1 by natural chemoprevention agents.
    Luo Y; Eggler AL; Liu D; Liu G; Mesecar AD; van Breemen RB
    J Am Soc Mass Spectrom; 2007 Dec; 18(12):2226-32. PubMed ID: 17980616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1.
    Eggler AL; Small E; Hannink M; Mesecar AD
    Biochem J; 2009 Jul; 422(1):171-80. PubMed ID: 19489739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.
    Zhang DD; Hannink M
    Mol Cell Biol; 2003 Nov; 23(22):8137-51. PubMed ID: 14585973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial protein targets of thiol-reactive electrophiles.
    Wong HL; Liebler DC
    Chem Res Toxicol; 2008 Apr; 21(4):796-804. PubMed ID: 18324786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction.
    Wang XJ; Sun Z; Chen W; Li Y; Villeneuve NF; Zhang DD
    Toxicol Appl Pharmacol; 2008 Aug; 230(3):383-9. PubMed ID: 18417180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers.
    Wakabayashi N; Dinkova-Kostova AT; Holtzclaw WD; Kang MI; Kobayashi A; Yamamoto M; Kensler TW; Talalay P
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2040-5. PubMed ID: 14764894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane.
    Hong F; Freeman ML; Liebler DC
    Chem Res Toxicol; 2005 Dec; 18(12):1917-26. PubMed ID: 16359182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrachlorobenzoquinone activates Nrf2 signaling by Keap1 cross-linking and ubiquitin translocation but not Keap1-Cullin3 complex dissociation.
    Su C; Zhang P; Song X; Shi Q; Fu J; Xia X; Bai H; Hu L; Xu D; Song E; Song Y
    Chem Res Toxicol; 2015 Apr; 28(4):765-74. PubMed ID: 25742418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.