BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 15985429)

  • 21. Reversibility of covalent electrophile-protein adducts and chemical toxicity.
    Lin D; Saleh S; Liebler DC
    Chem Res Toxicol; 2008 Dec; 21(12):2361-9. PubMed ID: 19548357
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles.
    Itoh K; Tong KI; Yamamoto M
    Free Radic Biol Med; 2004 May; 36(10):1208-13. PubMed ID: 15110385
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases.
    Villeneuve NF; Lau A; Zhang DD
    Antioxid Redox Signal; 2010 Dec; 13(11):1699-712. PubMed ID: 20486766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cysteine-based regulation of the CUL3 adaptor protein Keap1.
    Sekhar KR; Rachakonda G; Freeman ML
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):21-6. PubMed ID: 19560482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1.
    Nguyen T; Sherratt PJ; Nioi P; Yang CS; Pickett CB
    J Biol Chem; 2005 Sep; 280(37):32485-92. PubMed ID: 16000310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic induces NAD(P)H-quinone oxidoreductase I by disrupting the Nrf2 x Keap1 x Cul3 complex and recruiting Nrf2 x Maf to the antioxidant response element enhancer.
    He X; Chen MG; Lin GX; Ma Q
    J Biol Chem; 2006 Aug; 281(33):23620-31. PubMed ID: 16785233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants.
    Dinkova-Kostova AT; Holtzclaw WD; Cole RN; Itoh K; Wakabayashi N; Katoh Y; Yamamoto M; Talalay P
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11908-13. PubMed ID: 12193649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells.
    Baird L; Dinkova-Kostova AT
    Biochem Biophys Res Commun; 2013 Mar; 433(1):58-65. PubMed ID: 23454126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression.
    McMahon M; Itoh K; Yamamoto M; Hayes JD
    J Biol Chem; 2003 Jun; 278(24):21592-600. PubMed ID: 12682069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells.
    Um HC; Jang JH; Kim DH; Lee C; Surh YJ
    Nitric Oxide; 2011 Aug; 25(2):161-8. PubMed ID: 21703357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism.
    Kansanen E; Bonacci G; Schopfer FJ; Kuosmanen SM; Tong KI; Leinonen H; Woodcock SR; Yamamoto M; Carlberg C; Ylä-Herttuala S; Freeman BA; Levonen AL
    J Biol Chem; 2011 Apr; 286(16):14019-27. PubMed ID: 21357422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional activation of the human Galphai2 gene promoter through nuclear factor-kappaB and antioxidant response elements.
    Arinze IJ; Kawai Y
    J Biol Chem; 2005 Mar; 280(11):9786-95. PubMed ID: 15640523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles.
    Itoh K; Wakabayashi N; Katoh Y; Ishii T; O'Connor T; Yamamoto M
    Genes Cells; 2003 Apr; 8(4):379-91. PubMed ID: 12653965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells.
    Iso T; Suzuki T; Baird L; Yamamoto M
    Mol Cell Biol; 2016 Dec; 36(24):3100-3112. PubMed ID: 27697860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway.
    Hayes JD; McMahon M; Chowdhry S; Dinkova-Kostova AT
    Antioxid Redox Signal; 2010 Dec; 13(11):1713-48. PubMed ID: 20446772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification.
    Shin JW; Chun KS; Kim DH; Kim SJ; Kim SH; Cho NC; Na HK; Surh YJ
    Biochem Pharmacol; 2020 Mar; 173():113820. PubMed ID: 31972171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3.
    Hayes JD; Chowdhry S; Dinkova-Kostova AT; Sutherland C
    Biochem Soc Trans; 2015 Aug; 43(4):611-20. PubMed ID: 26551701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential expression and stability of endogenous nuclear factor E2-related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2 human hepatoma cells.
    Jeong WS; Keum YS; Chen C; Jain MR; Shen G; Kim JH; Li W; Kong AN
    J Biochem Mol Biol; 2005 Mar; 38(2):167-76. PubMed ID: 15826493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.