These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 15987102)

  • 1. Computer-controlled microcirculatory support system for endothelial cell culture and shearing.
    Song JW; Gu W; Futai N; Warner KA; Nor JE; Takayama S
    Anal Chem; 2005 Jul; 77(13):3993-9. PubMed ID: 15987102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a microcarrier culture system with serial sub-cultivation for functionally active human endothelial cells.
    Tashiro S; Tsumoto K; Sano E
    J Biotechnol; 2012 Aug; 160(3-4):202-13. PubMed ID: 22465290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Siphon-driven microfluidic passive pump with a yarn flow resistance controller.
    Jeong GS; Oh J; Kim SB; Dokmeci MR; Bae H; Lee SH; Khademhosseini A
    Lab Chip; 2014 Nov; 14(21):4213-9. PubMed ID: 25184743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An easy to assemble microfluidic perfusion device with a magnetic clamp.
    Tkachenko E; Gutierrez E; Ginsberg MH; Groisman A
    Lab Chip; 2009 Apr; 9(8):1085-95. PubMed ID: 19350090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system.
    Ohtani-Kaneko R; Sato K; Tsutiya A; Nakagawa Y; Hashizume K; Tazawa H
    Biomed Microdevices; 2017 Oct; 19(4):91. PubMed ID: 28994005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An apparatus for studying the response of cultured endothelial cells to stresses.
    Shen L; Qiao A; Ding H; Mo G; Xu G; Du Y; Li M; Chen Z; Zeng Y
    Australas Phys Eng Sci Med; 2006 Jun; 29(2):196-202. PubMed ID: 16845925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic chip for permeability assays of endothelial monolayer.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Lou X; Jin Q; Zhao J
    Biomed Microdevices; 2010 Feb; 12(1):81-8. PubMed ID: 19802699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-uniform flow behavior in a parallel plate flow chamber : alters endothelial cell responses.
    McCann JA; Peterson SD; Plesniak MW; Webster TJ; Haberstroh KM
    Ann Biomed Eng; 2005 Mar; 33(3):328-36. PubMed ID: 15868723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic alignment of collagen fibers for in vitro cell culture.
    Lee P; Lin R; Moon J; Lee LP
    Biomed Microdevices; 2006 Mar; 8(1):35-41. PubMed ID: 16491329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.
    Yu JQ; Liu XF; Chin LK; Liu AQ; Luo KQ
    Lab Chip; 2013 Jul; 13(14):2693-700. PubMed ID: 23620256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture.
    Xu ZR; Yang CG; Liu CH; Zhou Z; Fang J; Wang JH
    Talanta; 2010 Jan; 80(3):1088-93. PubMed ID: 20006057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function.
    Hattori K; Munehira Y; Kobayashi H; Satoh T; Sugiura S; Kanamori T
    J Biosci Bioeng; 2014 Sep; 118(3):327-32. PubMed ID: 24630614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes.
    Baguneid M; Murray D; Salacinski HJ; Fuller B; Hamilton G; Walker M; Seifalian AM
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):151-7. PubMed ID: 15032735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A palmtop-sized microfluidic cell culture system driven by a miniaturized infusion pump.
    Sasaki N; Shinjo M; Hirakawa S; Nishinaka M; Tanaka Y; Mawatari K; Kitamori T; Sato K
    Electrophoresis; 2012 Jul; 33(12):1729-35. PubMed ID: 22740461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells.
    Lee JM; Kim JE; Kang E; Lee SH; Chung BG
    Electrophoresis; 2011 Nov; 32(22):3133-7. PubMed ID: 22102496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.
    Meza D; Abejar L; Rubenstein DA; Yin W
    J Biomech Eng; 2016 Mar; 138(3):4032550. PubMed ID: 26810848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computerized microfluidic cell culture using elastomeric channels and Braille displays.
    Gu W; Zhu X; Futai N; Cho BS; Takayama S
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15861-6. PubMed ID: 15514025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device.
    Tang Z; Akiyama Y; Itoga K; Kobayashi J; Yamato M; Okano T
    Biomaterials; 2012 Oct; 33(30):7405-11. PubMed ID: 22818649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.