These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15987102)

  • 21. Pumpless steady-flow microfluidic chip for cell culture.
    Marimuthu M; Kim S
    Anal Biochem; 2013 Jun; 437(2):161-3. PubMed ID: 23453976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfabricated blood vessels for modeling the vascular transport barrier.
    Polacheck WJ; Kutys ML; Tefft JB; Chen CS
    Nat Protoc; 2019 May; 14(5):1425-1454. PubMed ID: 30953042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions.
    Raasch M; Rennert K; Jahn T; Peters S; Henkel T; Huber O; Schulz I; Becker H; Lorkowski S; Funke H; Mosig A
    Biofabrication; 2015 Mar; 7(1):015013. PubMed ID: 25727374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture.
    Giulitti S; Magrofuoco E; Prevedello L; Elvassore N
    Lab Chip; 2013 Nov; 13(22):4430-41. PubMed ID: 24064704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.
    Somaweera H; Haputhanthri SO; Ibraguimov A; Pappas D
    Analyst; 2015 Aug; 140(15):5029-38. PubMed ID: 26050759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of pulmonary cell growth parameters in a continuous perfusion microfluidic environment.
    Nalayanda DD; Puleo CM; Fulton WB; Wang TH; Abdullah F
    Exp Lung Res; 2007 Aug; 33(6):321-35. PubMed ID: 17694441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell morphological response to low shear stress in a two-dimensional culture microsystem with magnitudes comparable to interstitial shear stress.
    Park JY; Yoo SJ; Patel L; Lee SH; Lee SH
    Biorheology; 2010; 47(3-4):165-78. PubMed ID: 21084742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pumping-induced perturbation of flow in microfluidic channels and its implications for on-chip cell culture.
    Zhou J; Ren K; Dai W; Zhao Y; Ryan D; Wu H
    Lab Chip; 2011 Jul; 11(13):2288-94. PubMed ID: 21603722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macro- and microscale fluid flow systems for endothelial cell biology.
    Young EW; Simmons CA
    Lab Chip; 2010 Jan; 10(2):143-60. PubMed ID: 20066241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design considerations for a microfluidic device to quantify the platelet adhesion to collagen at physiological shear rates.
    Sarvepalli DP; Schmidtke DW; Nollert MU
    Ann Biomed Eng; 2009 Jul; 37(7):1331-41. PubMed ID: 19440840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow characterization of a microfluidic device to selectively and reliably apply reagents to a cellular network.
    Santillo MF; Arcibal IG; Ewing AG
    Lab Chip; 2007 Sep; 7(9):1212-5. PubMed ID: 17713624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Culture Conditions on Cell Proliferation in a Microfluidic Channel.
    Sato K; Sato M; Yokoyama M; Hirai M; Furuta A
    Anal Sci; 2019 Jan; 35(1):49-56. PubMed ID: 30473567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells.
    Chiu JJ; Chen LJ; Chen CN; Lee PL; Lee CI
    J Biomech; 2004 Apr; 37(4):531-9. PubMed ID: 14996565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gravity-driven preprogrammed microfluidic recirculation system for parallel biosensing of cell behaviors.
    Boonyaphon K; Li Z; Kim SJ
    Anal Chim Acta; 2022 Nov; 1233():340456. PubMed ID: 36283774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating biological vasculature into a multi-organ-chip microsystem.
    Schimek K; Busek M; Brincker S; Groth B; Hoffmann S; Lauster R; Lindner G; Lorenz A; Menzel U; Sonntag F; Walles H; Marx U; Horland R
    Lab Chip; 2013 Sep; 13(18):3588-98. PubMed ID: 23743770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological factors in plasma from diabetes mellitus patients enhance hyperglycaemia and pulsatile shear stress-induced endothelial cell apoptosis.
    Liu XF; Yu JQ; Dalan R; Liu AQ; Luo KQ
    Integr Biol (Camb); 2014 May; 6(5):511-22. PubMed ID: 24643402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Comparison of adhesion of different endothelial cells under shear stress load in the flow field in vitro].
    Xiao Z; Zhang B; Zhang E; Xu W; Shi Y; Guo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):157-62. PubMed ID: 21485205
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow.
    Rossi M; Lindken R; Hierck BP; Westerweel J
    Lab Chip; 2009 May; 9(10):1403-11. PubMed ID: 19417907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging.
    Vickerman V; Blundo J; Chung S; Kamm R
    Lab Chip; 2008 Sep; 8(9):1468-77. PubMed ID: 18818801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.