BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 15987105)

  • 1. Glucose sensing using near-infrared surface-enhanced Raman spectroscopy: gold surfaces, 10-day stability, and improved accuracy.
    Stuart DA; Yonzon CR; Zhang X; Lyandres O; Shah NC; Glucksberg MR; Walsh JT; Van Duyne RP
    Anal Chem; 2005 Jul; 77(13):4013-9. PubMed ID: 15987105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a glucose biosensor based on surface-enhanced Raman scattering.
    Shafer-Peltier KE; Haynes CL; Glucksberg MR; Van Duyne RP
    J Am Chem Soc; 2003 Jan; 125(2):588-93. PubMed ID: 12517176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo glucose measurement by surface-enhanced Raman spectroscopy.
    Stuart DA; Yuen JM; Shah N; Lyandres O; Yonzon CR; Glucksberg MR; Walsh JT; Van Duyne RP
    Anal Chem; 2006 Oct; 78(20):7211-5. PubMed ID: 17037923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer.
    Lyandres O; Shah NC; Yonzon CR; Walsh JT; Glucksberg MR; Van Duyne RP
    Anal Chem; 2005 Oct; 77(19):6134-9. PubMed ID: 16194070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference.
    Yonzon CR; Haynes CL; Zhang X; Walsh JT; Van Duyne RP
    Anal Chem; 2004 Jan; 76(1):78-85. PubMed ID: 14697035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate and sequential lactate-glucose sensing using surface-enhanced Raman spectroscopy.
    Shah NC; Lyandres O; Walsh JT; Glucksberg MR; Van Duyne RP
    Anal Chem; 2007 Sep; 79(18):6927-32. PubMed ID: 17688322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilayer enhanced gold film over nanostructure surface-enhanced Raman substrates.
    Li H; Baum CE; Sun J; Cullum BM
    Appl Spectrosc; 2006 Dec; 60(12):1377-85. PubMed ID: 17217586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation.
    Feng S; Lin J; Cheng M; Li YZ; Chen G; Huang Z; Yu Y; Chen R; Zeng H
    Appl Spectrosc; 2009 Oct; 63(10):1089-94. PubMed ID: 19843357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing.
    Kneipp J; Li X; Sherwood M; Panne U; Kneipp H; Stockman MI; Kneipp K
    Anal Chem; 2008 Jun; 80(11):4247-51. PubMed ID: 18439029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning plasmons on nano-structured substrates for NIR-SERS.
    Mahajan S; Abdelsalam M; Suguwara Y; Cintra S; Russell A; Baumberg J; Bartlett P
    Phys Chem Chem Phys; 2007 Jan; 9(1):104-9. PubMed ID: 17164891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection.
    Zhang X; Zhao J; Whitney AV; Elam JW; Van Duyne RP
    J Am Chem Soc; 2006 Aug; 128(31):10304-9. PubMed ID: 16881662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles.
    Schwartzberg AM; Oshiro TY; Zhang JZ; Huser T; Talley CE
    Anal Chem; 2006 Jul; 78(13):4732-6. PubMed ID: 16808490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis.
    Vo-Dinh T; Yan F; Stokes DL
    Methods Mol Biol; 2005; 300():255-83. PubMed ID: 15657488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single nanowire on a film as an efficient SERS-active platform.
    Yoon I; Kang T; Choi W; Kim J; Yoo Y; Joo SW; Park QH; Ihee H; Kim B
    J Am Chem Soc; 2009 Jan; 131(2):758-62. PubMed ID: 19099471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy.
    Zhang X; Young MA; Lyandres O; Van Duyne RP
    J Am Chem Soc; 2005 Mar; 127(12):4484-9. PubMed ID: 15783231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive blood glucose monitoring by means of near infrared spectroscopy: investigation of long-term accuracy and stability.
    Sämann A; Fischbacher CH; Jagemann KU; Danzer K; Schüler J; Papenkordt L; Müller UA
    Exp Clin Endocrinol Diabetes; 2000; 108(6):406-13. PubMed ID: 11026754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of surface selection rule of surface plasmon resonance near-infrared spectroscopy by using a Langmuir-Blodgett film.
    Ohara K; Ikehata A; Hirano Y; Ozaki Y
    Anal Chem; 2007 Nov; 79(21):8406-10. PubMed ID: 17915939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled silver nanochains for surface-enhanced Raman scattering.
    Yang Y; Shi J; Tanaka T; Nogami M
    Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.