BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 15987776)

  • 1. Pulmonary bioactivation of trichloroethylene to chloral hydrate: relative contributions of CYP2E1, CYP2F, and CYP2B1.
    Forkert PG; Baldwin RM; Millen B; Lash LH; Putt DA; Shultz MA; Collins KS
    Drug Metab Dispos; 2005 Oct; 33(10):1429-37. PubMed ID: 15987776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulmonary bronchiolar cytotoxicity and formation of dichloroacetyl lysine protein adducts in mice treated with trichloroethylene.
    Forkert PG; Millen B; Lash LH; Putt DA; Ghanayem BI
    J Pharmacol Exp Ther; 2006 Feb; 316(2):520-9. PubMed ID: 16269531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of ethyl carbamate by pulmonary cytochrome P450 and carboxylesterase isozymes: involvement of CYP2E1 and hydrolase A.
    Forkert PG; Lee RP
    Toxicol Appl Pharmacol; 1997 Oct; 146(2):245-54. PubMed ID: 9344892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulmonary CYP2E1 bioactivates 1,1-dichloroethylene in male and female mice.
    Lee RP; Forkert PG
    J Pharmacol Exp Ther; 1995 Apr; 273(1):561-7. PubMed ID: 7714813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro metabolism and covalent binding of ethylbenzene to microsomal protein as a possible mechanism of ethylbenzene-induced mouse lung tumorigenesis.
    Saghir SA; Zhang F; Rick DL; Kan L; Bus JS; Bartels MJ
    Regul Toxicol Pharmacol; 2010; 57(2-3):129-35. PubMed ID: 20096743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic factors involved in the metabolism of benzene in mouse lung and liver.
    Sheets P; Carlson G
    J Toxicol Environ Health A; 2004 Mar; 67(5):421-30. PubMed ID: 14718178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioactivation of 1,1-dichloroethylene to its epoxide by CYP2E1 and CYP2F enzymes.
    Simmonds AC; Reilly CA; Baldwin RM; Ghanayem BI; Lanza DL; Yost GS; Collins KS; Forkert PG
    Drug Metab Dispos; 2004 Sep; 32(9):1032-9. PubMed ID: 15319346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome P450-dependent metabolism of trichloroethylene: interindividual differences in humans.
    Lipscomb JC; Garrett CM; Snawder JE
    Toxicol Appl Pharmacol; 1997 Feb; 142(2):311-8. PubMed ID: 9070354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse specific lung tumors from CYP2F2-mediated cytotoxic metabolism: an endpoint/toxic response where data from multiple chemicals converge to support a mode of action.
    Cruzan G; Bus J; Banton M; Gingell R; Carlson G
    Regul Toxicol Pharmacol; 2009 Nov; 55(2):205-18. PubMed ID: 19589367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome P-450-dependent bioactivation of 1,1-dichloroethylene to a reactive epoxide in human lung and liver microsomes.
    Dowsley TF; Reid K; Petsikas D; Ulreich JB; Fisher RL; Forkert PG
    J Pharmacol Exp Ther; 1999 May; 289(2):641-8. PubMed ID: 10215634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of human and cynomolgus monkey cytochrome P450 2E1 enzymes.
    Hanioka N; Yamamoto M; Iwabu H; Jinno H; Tanaka-Kagawa T; Naito S; Shimizu T; Masuda K; Katsu T; Narimatsu S
    Life Sci; 2007 Oct; 81(19-20):1436-45. PubMed ID: 17935737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of trichloroethylene in isolated hepatocytes, microsomes, and reconstituted enzyme systems containing cytochrome P-450.
    Miller RE; Guengerich FP
    Cancer Res; 1983 Mar; 43(3):1145-52. PubMed ID: 6825087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-selective differences in cytochrome P450 isoform activities. Comparison of expression in rat and rhesus monkey lung and induction in rats.
    Lee C; Watt KC; Chang AM; Plopper CG; Buckpitt AR; Pinkerton KE
    Drug Metab Dispos; 1998 May; 26(5):396-400. PubMed ID: 9571220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactivation of 1,1-dichloroethylene by CYP2E1 and CYP2F2 in murine lung.
    Simmonds AC; Ghanayem BI; Sharma A; Reilly CA; Millen B; Yost GS; Forkert PG
    J Pharmacol Exp Ther; 2004 Sep; 310(3):855-64. PubMed ID: 15123768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of N-alkylprotoporphyrin IX from metabolism of diallyl sulfone in lung and liver.
    Black GP; Collins KS; Blacquiere DP; Forkert PG
    Drug Metab Dispos; 2006 Jun; 34(6):895-900. PubMed ID: 16510538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of CYP2E1 and carboxylesterase enzymes in vinyl carbamate metabolism in human lung microsomes.
    Forkert PG; Lee RP; Reid K
    Drug Metab Dispos; 2001 Mar; 29(3):258-63. PubMed ID: 11181492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CYP2E1-dependent bioactivation of 1,1-dichloroethylene in murine lung: formation of reactive intermediates and glutathione conjugates.
    Dowsley TF; Ulreich JB; Bolton JL; Park SS; Forkert PG
    Toxicol Appl Pharmacol; 1996 Jul; 139(1):42-8. PubMed ID: 8685907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physiologically based pharmacokinetic model for trichloroethylene and its metabolites, chloral hydrate, trichloroacetate, dichloroacetate, trichloroethanol, and trichloroethanol glucuronide in B6C3F1 mice.
    Abbas R; Fisher JW
    Toxicol Appl Pharmacol; 1997 Nov; 147(1):15-30. PubMed ID: 9356303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzene metabolism in human lung cell lines BEAS-2B and A549 and cells overexpressing CYP2F1.
    Sheets PL; Yost GS; Carlson GP
    J Biochem Mol Toxicol; 2004; 18(2):92-9. PubMed ID: 15122651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloral hydrate formation in the Japanese medaka minnow.
    Lipscomb JC; Buttler GW; Confer PD
    Ann Clin Lab Sci; 1997; 27(2):157-62. PubMed ID: 9098516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.