These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 15987935)

  • 1. Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of Held.
    Kim MH; Korogod N; Schneggenburger R; Ho WK; Lee SH
    J Neurosci; 2005 Jun; 25(26):6057-65. PubMed ID: 15987935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+/Ca2+ exchange and Ca2+ homeostasis in axon terminals of mammalian central neurons.
    Lee SH; Kim MH; Lee JY; Lee SH; Lee D; Park KH; Ho WK
    Ann N Y Acad Sci; 2007 Mar; 1099():396-412. PubMed ID: 17446480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of K+-dependent Na+/Ca2+ exchangers in the rat supraoptic magnocellular neuron is polarized to axon terminals.
    Kim MH; Lee SH; Park KH; Ho WK; Lee SH
    J Neurosci; 2003 Dec; 23(37):11673-80. PubMed ID: 14684869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium homeostasis in trigeminal ganglion cell bodies.
    Gover TD; Moreira TH; Kao JP; Weinreich D
    Cell Calcium; 2007 Apr; 41(4):389-96. PubMed ID: 17046058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K+-dependent Na+/Ca2+ exchange is a major Ca2+ clearance mechanism in axon terminals of rat neurohypophysis.
    Lee SH; Kim MH; Park KH; Earm YE; Ho WK
    J Neurosci; 2002 Aug; 22(16):6891-9. PubMed ID: 12177187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The plasma membrane calcium-ATPase as a major mechanism for intracellular calcium regulation in neurones from the rat superior cervical ganglion.
    Wanaverbecq N; Marsh SJ; Al-Qatari M; Brown DA
    J Physiol; 2003 Jul; 550(Pt 1):83-101. PubMed ID: 12879862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal developmental changes in Ca2+ homeostasis in supraoptic magnocellular neurons.
    Lee SH; Park KH; Ho WK; Lee SH
    Cell Calcium; 2007 May; 41(5):441-50. PubMed ID: 17010427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental upregulation of presynaptic NCKX underlies the decrease of mitochondria-dependent posttetanic potentiation at the rat calyx of Held synapse.
    Lee JS; Kim MH; Ho WK; Lee SH
    J Neurophysiol; 2013 Apr; 109(7):1724-34. PubMed ID: 23282327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In depolarized and glucose-deprived neurons, Na+ influx reverses plasmalemmal K+-dependent and K+-independent Na+/Ca2+ exchangers and contributes to NMDA excitotoxicity.
    Czyz A; Kiedrowski L
    J Neurochem; 2002 Dec; 83(6):1321-8. PubMed ID: 12472886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices.
    Fierro L; DiPolo R; Llano I
    J Physiol; 1998 Jul; 510 ( Pt 2)(Pt 2):499-512. PubMed ID: 9705999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominant role of mitochondria in calcium homeostasis of single rat pituitary corticotropes.
    Lee AK; Tse A
    Endocrinology; 2005 Nov; 146(11):4985-93. PubMed ID: 16081644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced outward K+ conductances generate depolarizing after-potentials in rat supraoptic nucleus neurones.
    Li Z; Hatton GI
    J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):95-106. PubMed ID: 9409474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clearance of store-released Ca2+ by the Na+-Ca2+ exchanger is diminished in aortic smooth muscle from Na+-K+-ATPase alpha 2-isoform gene-ablated mice.
    Lynch RM; Weber CS; Nullmeyer KD; Moore ED; Paul RJ
    Am J Physiol Heart Circ Physiol; 2008 Mar; 294(3):H1407-16. PubMed ID: 18192219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells.
    Herrington J; Park YB; Babcock DF; Hille B
    Neuron; 1996 Jan; 16(1):219-28. PubMed ID: 8562086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport.
    Lytton J
    Biochem J; 2007 Sep; 406(3):365-82. PubMed ID: 17716241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria buffer non-toxic calcium loads and release calcium through the mitochondrial permeability transition pore and sodium/calcium exchanger in rat basal forebrain neurons.
    Murchison D; Griffith WH
    Brain Res; 2000 Jan; 854(1-2):139-51. PubMed ID: 10784115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential contribution of plasmalemmal Na/Ca exchange isoforms to sodium-dependent calcium influx and NMDA excitotoxicity in depolarized neurons.
    Kiedrowski L; Czyz A; Baranauskas G; Li XF; Lytton J
    J Neurochem; 2004 Jul; 90(1):117-28. PubMed ID: 15198672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium regulation in mouse mesencephalic neurons-Differential roles of Na(+)/Ca(2+) exchanger, mitochondria and endoplasmic reticulum.
    Wu PC; Kao LS
    Cell Calcium; 2016 Jun; 59(6):299-311. PubMed ID: 27020658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependent contribution of Ca2+ transporters to relaxation in cardiac myocytes: important role of sarcolemmal Ca2+-ATPase.
    Mackiewicz U; Lewartowski B
    J Physiol Pharmacol; 2006 Mar; 57(1):3-15. PubMed ID: 16601311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na(+)-Ca2+ exchange function underlying contraction frequency inotropy in the cat myocardium.
    Vila Petroff MG; Palomeque J; Mattiazzi AR
    J Physiol; 2003 Aug; 550(Pt 3):801-17. PubMed ID: 12938675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.