These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 15988518)

  • 1. The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars.
    Dauphas N
    Nature; 2005 Jun; 435(7046):1203-5. PubMed ID: 15988518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genesis of the heaviest elements in the Milky Way Galaxy.
    Sneden C; Cowan JJ
    Science; 2003 Jan; 299(5603):70-5. PubMed ID: 12511642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of stellar age from uranium decay.
    Cayrel R; Hill V; Beers TC; Barbuy B; Spite M; Spite F; Plez B; Andersen J; Bonifacio P; François P; Molaro P; Nordström B; Primas F
    Nature; 2001 Feb; 409(6821):691-2. PubMed ID: 11217852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two stellar components in the halo of the Milky Way.
    Carollo D; Beers TC; Lee YS; Chiba M; Norris JE; Wilhelm R; Sivarani T; Marsteller B; Munn JA; Bailer-Jones CA; Fiorentin PR; York DG
    Nature; 2007 Dec; 450(7172):1020-5. PubMed ID: 18075581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accretion of low-metallicity gas by the Milky Way.
    Wakker BP; Howk JC; Savage BD; van Woerden H; Tufte SL; Schwarz UJ; Benjamin R; Reynolds RJ; Peletier RF; Kalberla PM
    Nature; 1999 Nov; 402(6760):388-90. PubMed ID: 10586877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. r-Process elements from magnetorotational hypernovae.
    Yong D; Kobayashi C; Da Costa GS; Bessell MS; Chiti A; Frebel A; Lind K; Mackey AD; Nordlander T; Asplund M; Casey AR; Marino AF; Murphy SJ; Schmidt BP
    Nature; 2021 Jul; 595(7866):223-226. PubMed ID: 34234332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cosmological density of baryons from observations of 3He+ in the Milky Way.
    Bania TM; Rood RT; Balser DS
    Nature; 2002 Jan; 415(6867):54-7. PubMed ID: 11780112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type II supernovae as a significant source of interstellar dust.
    Dunne L; Eales S; Ivison R; Morgan H; Edmunds M
    Nature; 2003 Jul; 424(6946):285-7. PubMed ID: 12867973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.
    Howes LM; Casey AR; Asplund M; Keller SC; Yong D; Nataf DM; Poleski R; Lind K; Kobayashi C; Owen CI; Ness M; Bessell MS; Da Costa GS; Schmidt BP; Tisserand P; Udalski A; Szymański MK; Soszyński I; Pietrzyński G; Ulaczyk K; Wyrzykowski Ł; Pietrukowicz P; Skowron J; Kozłowski S; Mróz P
    Nature; 2015 Nov; 527(7579):484-7. PubMed ID: 26560034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of the elements: a century of progress.
    Johnson JA; Fields BD; Thompson TA
    Philos Trans A Math Phys Eng Sci; 2020 Sep; 378(2180):20190301. PubMed ID: 32811358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A probable stellar solution to the cosmological lithium discrepancy.
    Korn AJ; Grundahl F; Richard O; Barklem PS; Mashonkina L; Collet R; Piskunov N; Gustafsson B
    Nature; 2006 Aug; 442(7103):657-9. PubMed ID: 16900193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An aligned stream of low-metallicity clusters in the halo of the Milky Way.
    Yoon SJ; Lee YW
    Science; 2002 Jul; 297(5581):578-81. PubMed ID: 12142530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The galactic habitable zone and the age distribution of complex life in the Milky Way.
    Lineweaver CH; Fenner Y; Gibson BK
    Science; 2004 Jan; 303(5654):59-62. PubMed ID: 14704421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A substantial population of low-mass stars in luminous elliptical galaxies.
    van Dokkum PG; Conroy C
    Nature; 2010 Dec; 468(7326):940-2. PubMed ID: 21124316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct detection of a microlens in the Milky Way.
    Alcock C; Allsman RA; Alves DR; Axelrod TS; Becker AC; Bennett DP; Cook KH; Drake AJ; Freeman KC; Geha M; Griest K; Keller SC; Lehner MJ; Marshall SL; Minniti D; Nelson CA; Peterson BA; Popowski P; Pratt MR; Quinn PJ; Stubbs CW; Sutherland W; Tomaney AB; Vandehei T; Welch D
    Nature; 2001 Dec; 414(6864):617-9. PubMed ID: 11740553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radioisotopes and the history of nucleosynthesis in the galaxy.
    Hohenberg CM
    Science; 1969 Oct; 166(3902):212-5. PubMed ID: 17731483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. R-process enrichment from a single event in an ancient dwarf galaxy.
    Ji AP; Frebel A; Chiti A; Simon JD
    Nature; 2016 Mar; 531(7596):610-3. PubMed ID: 27001693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stellar relic from the early Milky Way.
    Christlieb N; Bessell MS; Beers TC; Gustafsson B; Korn A; Barklem PS; Karlsson T; Mizuno-Wiedner M; Rossi S
    Nature; 2002 Oct; 419(6910):904-6. PubMed ID: 12410304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A time-resolved picture of our Milky Way's early formation history.
    Xiang M; Rix HW
    Nature; 2022 Mar; 603(7902):599-603. PubMed ID: 35322254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nearby neutron-star merger explains the actinide abundances in the early Solar System.
    Bartos I; Marka S
    Nature; 2019 May; 569(7754):85-88. PubMed ID: 31043731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.