These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 15990062)
1. Wall pressure gradient in normal left coronary artery tree. Giannoglou GD; Soulis JV; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE Med Eng Phys; 2005 Jul; 27(6):455-64. PubMed ID: 15990062 [TBL] [Abstract][Full Text] [Related]
2. Wall shear stress gradient topography in the normal left coronary arterial tree: possible implications for atherogenesis. Farmakis TM; Soulis JV; Giannoglou GD; Zioupos GJ; Louridas GE Curr Med Res Opin; 2004 May; 20(5):587-96. PubMed ID: 15140324 [TBL] [Abstract][Full Text] [Related]
3. Flow parameters in normal left coronary artery tree. Implication to atherogenesis. Soulis JV; Giannoglou GD; Parcharidis GE; Louridas GE Comput Biol Med; 2007 May; 37(5):628-36. PubMed ID: 16920094 [TBL] [Abstract][Full Text] [Related]
4. Wall shear stress in normal left coronary artery tree. Soulis JV; Farmakis TM; Giannoglou GD; Louridas GE J Biomech; 2006; 39(4):742-9. PubMed ID: 16439244 [TBL] [Abstract][Full Text] [Related]
5. Low-Density Lipoprotein concentration in the normal Left Coronary Artery tree. Soulis JV; Giannoglou GD; Papaioannou V; Parcharidis GE; Louridas GE Biomed Eng Online; 2008 Oct; 7():26. PubMed ID: 18925974 [TBL] [Abstract][Full Text] [Related]
6. A study on the compliance of a right coronary artery and its impact on wall shear stress. Zeng D; Boutsianis E; Ammann M; Boomsma K; Wildermuth S; Poulikakos D J Biomech Eng; 2008 Aug; 130(4):041014. PubMed ID: 18601456 [TBL] [Abstract][Full Text] [Related]
7. Molecular viscosity in the normal left coronary arterial tree. Is it related to atherosclerosis? Soulis JV; Farmakis TM; Giannoglou GD; Chatzizisis YS; Giannakoulas GA; Parcharidis GE; Louridas GE Angiology; 2006; 57(1):33-40. PubMed ID: 16444454 [TBL] [Abstract][Full Text] [Related]
8. Computational simulation of intracoronary flow based on real coronary geometry. Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879 [TBL] [Abstract][Full Text] [Related]
9. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion. Van Epps JS; Vorp DA J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis. Boyd J; Buick JM Phys Med Biol; 2008 Oct; 53(20):5767-79. PubMed ID: 18824786 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. shear analysis. Boyd J; Buick JM Phys Med Biol; 2008 Oct; 53(20):5781-95. PubMed ID: 18824787 [TBL] [Abstract][Full Text] [Related]
12. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis. Wong KKL; Wu J; Liu G; Huang W; Ghista DN Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006 [TBL] [Abstract][Full Text] [Related]
13. Time-dependent 3D simulations of the hemodynamics in a stented coronary artery. Faik I; Mongrain R; Leask RL; Rodes-Cabau J; Larose E; Bertrand O Biomed Mater; 2007 Mar; 2(1):S28-37. PubMed ID: 18458417 [TBL] [Abstract][Full Text] [Related]
14. Association of endothelial shear stress with plaque thickness in a real three-dimensional left main coronary artery bifurcation model. Papafaklis MI; Bourantas CV; Theodorakis PE; Katsouras CS; Fotiadis DI; Michalis LK Int J Cardiol; 2007 Feb; 115(2):276-8. PubMed ID: 16762432 [TBL] [Abstract][Full Text] [Related]
15. Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model. Comerford A; Plank MJ; David T J Biomech Eng; 2008 Feb; 130(1):011010. PubMed ID: 18298186 [TBL] [Abstract][Full Text] [Related]
16. Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model. Pivkin IV; Richardson PD; Laidlaw DH; Karniadakis GE J Biomech; 2005 Jun; 38(6):1283-90. PubMed ID: 15863113 [TBL] [Abstract][Full Text] [Related]
17. Simulation of cardiac motion on non-Newtonian, pulsating flow development in the human left anterior descending coronary artery. Theodorakakos A; Gavaises M; Andriotis A; Zifan A; Liatsis P; Pantos I; Efstathopoulos EP; Katritsis D Phys Med Biol; 2008 Sep; 53(18):4875-92. PubMed ID: 18711245 [TBL] [Abstract][Full Text] [Related]
18. Computation of hemodynamics in the left coronary artery with variable angulations. Chaichana T; Sun Z; Jewkes J J Biomech; 2011 Jul; 44(10):1869-78. PubMed ID: 21550611 [TBL] [Abstract][Full Text] [Related]
19. Influence of graft-host diameter ratio on the hemodynamics of CABG. Qiao A; Liu Y Biomed Mater Eng; 2006; 16(3):189-201. PubMed ID: 16518018 [TBL] [Abstract][Full Text] [Related]
20. The flow field along the entire length of mouse aorta and primary branches. Huo Y; Guo X; Kassab GS Ann Biomed Eng; 2008 May; 36(5):685-99. PubMed ID: 18299987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]