BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15990204)

  • 1. The radiological impact from airborne routine discharges of a modern coal-fired power plant.
    Zeevaert T; Sweeck L; Vanmarcke H
    J Environ Radioact; 2006; 85(1):1-22. PubMed ID: 15990204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants.
    Karangelos DJ; Petropoulos NP; Anagnostakis MJ; Hinis EP; Simopoulos SE
    J Environ Radioact; 2004; 77(3):233-46. PubMed ID: 15381319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.
    Papastefanou C
    J Environ Radioact; 2010 Mar; 101(3):191-200. PubMed ID: 20005612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of environmental background radiation at location of coal-fired power plants.
    Adrovic F; Prokić M; Ninković MM; Glisić R
    Radiat Prot Dosimetry; 2004; 112(3):439-42. PubMed ID: 15385680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of occupational radiation exposures to NORM at an Irish peat-fired power station and potential use of peat fly ash by the construction industry.
    Organo C; Lee EM; Menezes G; Finch EC
    J Radiol Prot; 2005 Dec; 25(4):461-74. PubMed ID: 16340073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of natural radionuclides in the surroundings of the four largest coal-fired power plants in Spain.
    Baeza A; Corbacho JA; Guillén J; Salas A; Mora JC; Robles B; Cancio D
    J Environ Monit; 2012 Mar; 14(3):1064-72. PubMed ID: 22330984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NORM emissions from heavy oil and natural gas fired power plants in Syria.
    Al-Masri MS; Haddad Kh
    J Environ Radioact; 2012 Feb; 104():71-4. PubMed ID: 22033192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radionuclide content and associated radiation hazards of building materials and by-products in Baoji, West China.
    Lu X; Zhang X
    Radiat Prot Dosimetry; 2008; 128(4):471-6. PubMed ID: 17921511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emissions of mercury and other trace elements from coal-fired power plants in Japan.
    Ito S; Yokoyama T; Asakura K
    Sci Total Environ; 2006 Sep; 368(1):397-402. PubMed ID: 16225907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of radon exhalation rate, natural radioactivity and radiation doses in fly ash samples from Durgapur thermal power plant, West Bengal, India.
    Mahur AK; Kumar R; Sengupta D; Prasad R
    J Environ Radioact; 2008 Aug; 99(8):1289-93. PubMed ID: 18467012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.
    Hasani F; Shala F; Xhixha G; Xhixha MK; Hodolli G; Kadiri S; Bylyku E; Cfarku F
    J Environ Radioact; 2014 Dec; 138():156-61. PubMed ID: 25233215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region.
    Smolka-Danielowska D
    J Environ Radioact; 2010 Nov; 101(11):965-8. PubMed ID: 20713303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis of the spatial distribution of radionuclides in soils around a coal-fired power plant in Spain.
    Charro E; Pardo R; Peña V
    J Environ Radioact; 2013 Oct; 124():84-92. PubMed ID: 23680923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimate of the dose-increment due to outdoor exposure to gamma rays from uranium progeny deposited on the soil around a coal-fired power plant in Ajka Town, Hungary.
    Papp Z; Dezsö Z
    Health Phys; 2003 Jun; 84(6):709-17. PubMed ID: 12822580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiological impact of airborne effluents of coal and nuclear plants.
    McBride JP; Moore RE; Witherspoon JP; Blanco RE
    Science; 1978 Dec; 202(4372):1045-50. PubMed ID: 17777943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash.
    Sahu SK; Tiwari M; Bhangare RC; Pandit GG
    J Environ Radioact; 2014 Dec; 138():421-6. PubMed ID: 24813148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations on fly-ash and soil samples in the environment of a coal-fired power plant.
    Glöbel B; Andres C
    Sci Total Environ; 1985 Oct; 45():63-7. PubMed ID: 4081767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental effects of natural radionuclides from coal-fired power plants.
    Nakaoka A; Fukushima M; Takagi S
    Health Phys; 1984 Sep; 47(3):407-16. PubMed ID: 6500942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term modelling of fly ash and radionuclide emissions as well as deposition fluxes due to the operation of large oil shale-fired power plants.
    Vaasma T; Kaasik M; Loosaar J; Kiisk M; Tkaczyk AH
    J Environ Radioact; 2017 Nov; 178-179():232-244. PubMed ID: 28910626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiation impact from lignite burning due to 226Ra in Greek coal-fired power plants.
    Papastefanou C
    Health Phys; 1996 Feb; 70(2):187-91. PubMed ID: 8567285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.