BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

760 related articles for article (PubMed ID: 15990326)

  • 1. Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice.
    Sun Z; Wang HB; Deng YP; Lei WL; Xie JP; Meade CA; Del Mar N; Goldowitz D; Reiner A
    Neurobiol Dis; 2005 Dec; 20(3):907-17. PubMed ID: 15990326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease.
    Huang Q; Zhou D; Sapp E; Aizawa H; Ge P; Bird ED; Vonsattel JP; DiFiglia M
    Neuroscience; 1995 Mar; 65(2):397-407. PubMed ID: 7777157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene.
    Hansson O; Guatteo E; Mercuri NB; Bernardi G; Li XJ; Castilho RF; Brundin P
    Eur J Neurosci; 2001 Nov; 14(9):1492-504. PubMed ID: 11722611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length.
    Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P
    J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease.
    Starling AJ; André VM; Cepeda C; de Lima M; Chandler SH; Levine MS
    J Neurosci Res; 2005 Nov; 82(3):377-86. PubMed ID: 16211559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Huntingtin immunoreactivity in the rat neostriatum: differential accumulation in projection and interneurons.
    Kosinski CM; Cha JH; Young AB; Persichetti F; MacDonald M; Gusella JF; Penney JB; Standaert DG
    Exp Neurol; 1997 Apr; 144(2):239-47. PubMed ID: 9168825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMDA receptor function in mouse models of Huntington disease.
    Cepeda C; Ariano MA; Calvert CR; Flores-Hernández J; Chandler SH; Leavitt BR; Hayden MR; Levine MS
    J Neurosci Res; 2001 Nov; 66(4):525-39. PubMed ID: 11746372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decrease in striatal enkephalin mRNA in mouse models of Huntington's disease.
    Menalled L; Zanjani H; MacKenzie L; Koppel A; Carpenter E; Zeitlin S; Chesselet MF
    Exp Neurol; 2000 Apr; 162(2):328-42. PubMed ID: 10739639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular localization of huntingtin in striatal and cortical neurons in rats: lack of correlation with neuronal vulnerability in Huntington's disease.
    Fusco FR; Chen Q; Lamoreaux WJ; Figueredo-Cardenas G; Jiao Y; Coffman JA; Surmeier DJ; Honig MG; Carlock LR; Reiner A
    J Neurosci; 1999 Feb; 19(4):1189-202. PubMed ID: 9952397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunohistochemical localization of receptor for advanced glycation end (RAGE) products in the R6/2 mouse model of Huntington's disease.
    Anzilotti S; Giampà C; Laurenti D; Perrone L; Bernardi G; Melone MA; Fusco FR
    Brain Res Bull; 2012 Feb; 87(2-3):350-8. PubMed ID: 21272617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intranuclear inclusions in subtypes of striatal neurons in Huntington's disease transgenic mice.
    Kosinski CM; Cha JH; Young AB; Mangiarini L; Bates G; Schiefer J; Schwarz M
    Neuroreport; 1999 Dec; 10(18):3891-6. PubMed ID: 10716229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington's Disease.
    Brustovetsky N; LaFrance R; Purl KJ; Brustovetsky T; Keene CD; Low WC; Dubinsky JM
    J Neurochem; 2005 Jun; 93(6):1361-70. PubMed ID: 15935052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenic mice expressing a Huntington's disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity.
    Hansson O; Petersén A; Leist M; Nicotera P; Castilho RF; Brundin P
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8727-32. PubMed ID: 10411943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. R6/2 neurons with intranuclear inclusions survive for prolonged periods in the brains of chimeric mice.
    Reiner A; Del Mar N; Deng YP; Meade CA; Sun Z; Goldowitz D
    J Comp Neurol; 2007 Dec; 505(6):603-29. PubMed ID: 17948889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced striatal acetylcholine efflux in the R6/2 mouse model of Huntington's disease: an examination of the role of altered inhibitory and excitatory mechanisms.
    Farrar AM; Callahan JW; Abercrombie ED
    Exp Neurol; 2011 Dec; 232(2):119-25. PubMed ID: 21864528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington's disease.
    Hughes PE; Alexi T; Williams CE; Clark RG; Gluckman PD
    Neuroscience; 1999; 92(1):197-209. PubMed ID: 10392842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease.
    Cummings DM; Alaghband Y; Hickey MA; Joshi PR; Hong SC; Zhu C; Ando TK; André VM; Cepeda C; Watson JB; Levine MS
    J Neurophysiol; 2012 Jan; 107(2):677-91. PubMed ID: 22072510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice.
    Rajput PS; Kharmate G; Norman M; Liu SH; Sastry BR; Brunicardi CF; Kumar U
    PLoS One; 2011; 6(9):e24467. PubMed ID: 21912697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine.
    Petersén A; Hansson O; Puschban Z; Sapp E; Romero N; Castilho RF; Sulzer D; Rice M; DiFiglia M; Przedborski S; Brundin P
    Eur J Neurosci; 2001 Nov; 14(9):1425-35. PubMed ID: 11722604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types.
    Figueredo-Cardenas G; Harris CL; Anderson KD; Reiner A
    Exp Neurol; 1998 Feb; 149(2):356-72. PubMed ID: 9500958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.