BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15990359)

  • 1. Time-varying differences in evoked potentials elicited by high versus low spatial frequencies: a topographical and source analysis.
    Boeschoten MA; Kemner C; Kenemans JL; van Engeland H
    Clin Neurophysiol; 2005 Aug; 116(8):1956-66. PubMed ID: 15990359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal spatial frequency processing in high-functioning children with pervasive developmental disorder (PDD).
    Boeschoten MA; Kenemans JL; van Engeland H; Kemner C
    Clin Neurophysiol; 2007 Sep; 118(9):2076-88. PubMed ID: 17591458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between local and global processing and the processing of high and low spatial frequencies studied by event-related potentials and source modeling.
    Boeschoten MA; Kemner C; Kenemans JL; Engeland Hv
    Brain Res Cogn Brain Res; 2005 Jul; 24(2):228-36. PubMed ID: 15993761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetry in visual evoked potentials to gratings registered in the two hemispheres of the human brain.
    Grabowska A; Nowicka A; Szatkowska I
    Acta Neurobiol Exp (Wars); 1992; 52(4):239-49. PubMed ID: 1293962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial-frequency-dependent changes in cortical activation before and after patching in amblyopic children.
    Weiss AH; Kelly JP
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3531-7. PubMed ID: 15452059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemispheric asymmetry in transient visual evoked potentials induced by the spatial factor of the stimulation.
    Rebai M; Bagot JD; Viggiano MP
    Brain Cogn; 1993 Nov; 23(2):263-78. PubMed ID: 8292329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemispheric differences in VEP elicited by mental arithmetic and tachistoscopically presented spatial transformation tasks.
    Gille HG; Ullsperger P; Pietschmann M
    Act Nerv Super (Praha); 1983 Mar; 25(1):37-42. PubMed ID: 6858591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A decomposition of electrocortical activity as a function of spatial frequency: a weighted multidimensional scaling analysis.
    Melis C; Baas JM; Kenemans JL; Mangun GR
    Brain Res; 2008 Jun; 1214():116-26. PubMed ID: 18471806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemisphere asymmetry of the visually evoked potentials elicited by gratings of varying spatial frequency.
    Vassilev A; Manahilov V; Mitov D; Nevskaya AA; Leushina LI
    Acta Physiol Pharmacol Bulg; 1991; 17(2-3):54-60. PubMed ID: 1819918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Split-second sequential selective activation in human secondary visual cortex.
    Kenemans JL; Lijffijt M; Camfferman G; Verbaten MN
    J Cogn Neurosci; 2002 Jan; 14(1):48-61. PubMed ID: 11798386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus duration, neural adaptation, and sweep visual evoked potential acuity estimates.
    Ridder WH; McCulloch D; Herbert AM
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2759-68. PubMed ID: 9856787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-head MEG analysis of cortical spatial organization from unilateral stimulation of median nerve in both hands: no complete hemispheric homology.
    Theuvenet PJ; van Dijk BW; Peters MJ; van Ree JM; Lopes da Silva FL; Chen AC
    Neuroimage; 2005 Nov; 28(2):314-25. PubMed ID: 16040256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and frequency differences of neuromagnetic activities between the perception of open- and closed-class words.
    Wang Y; Xiang J; Kotecha R; Vannest J; Liu Y; Rose D; Schapiro M; Degrauw T
    Brain Topogr; 2008 Dec; 21(2):75-85. PubMed ID: 18679788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On spatial frequencies and cerebral hemispheres: some remarks from the electrophysiological and neuropsychological points of view.
    Mecacci L
    Brain Cogn; 1993 Jul; 22(2):199-212. PubMed ID: 8373573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual evoked potentials for red-green gratings reversing at different temporal frequencies: asymmetries with respect to isoluminance.
    Rudvin I; Valberg A
    Vis Neurosci; 2005; 22(6):735-47. PubMed ID: 16469184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired visual processing of contralesional stimuli in neglect patients: a visual-evoked potential study.
    Di Russo F; Aprile T; Spitoni G; Spinelli D
    Brain; 2008 Mar; 131(Pt 3):842-54. PubMed ID: 18024488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corpus callosum has different channels for transmission of spatial frequency information.
    Kalaycioğlu C; Nalçaci E; Schmiedt-Fehr C; Başar-Eroğlu C
    Brain Res; 2009 Nov; 1296():85-93. PubMed ID: 19686709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Visual evoked potentials to illusory contours (Kanizsa's square)].
    Korshunova SG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1998; 48(5):807-15. PubMed ID: 9949530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of the spatial frequency of sinusoidal gratings on amplitude and temporal parameters of visual evoked potentials in man].
    Zislina NN; Fil'chikova LI; Levkovich IuI; Batyr' OIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1984; 34(5):848-54. PubMed ID: 6506863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemispheric differences in strong versus weak semantic priming: evidence from event-related brain potentials.
    Frishkoff GA
    Brain Lang; 2007 Jan; 100(1):23-43. PubMed ID: 16908058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.