BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15991052)

  • 21. Biofilm formation and Candida albicans morphology on the surface of denture base materials.
    Susewind S; Lang R; Hahnel S
    Mycoses; 2015 Dec; 58(12):719-27. PubMed ID: 26471334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth and acid production of Candida albicans in carbohydrate supplemented media.
    Samaranayake LP; Geddes DA; Weetman DA; MacFarlane TW
    Microbios; 1983; 37(148):105-15. PubMed ID: 6353167
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Bernard C; Lemoine V; Hoogenkamp MA; Girardot M; Krom BP; Imbert C
    Biofouling; 2019 Mar; 35(3):350-360. PubMed ID: 31088179
    [No Abstract]   [Full Text] [Related]  

  • 24. Characterization of switch phenotypes in Candida albicans biofilms.
    Jin Y; Samaranayake YH; Yip HK; Samaranayake LP
    Mycopathologia; 2005 Oct; 160(3):191-200. PubMed ID: 16205967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Involvement of heat shock proteins in Candida albicans biofilm formation.
    Becherelli M; Tao J; Ryder NS
    J Mol Microbiol Biotechnol; 2013; 23(6):396-400. PubMed ID: 23942459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Dimorphism of Candida albicans in the model of continuous flow culture].
    Bernhardt H; Zimmermann K; Knoke M
    Mycoses; 1994; 37 Suppl 1():50-6. PubMed ID: 7854366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Candida albicans SNO1 and SNZ1 expressed in stationary-phase planktonic yeast cells and base of biofilm.
    Uppuluri P; Sarmah B; Chaffin WL
    Microbiology (Reading); 2006 Jul; 152(Pt 7):2031-2038. PubMed ID: 16804178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin.
    Tsutsumi C; Takakuda K; Wakabayashi N
    J Dent; 2016 Jan; 44():37-43. PubMed ID: 26655872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars.
    Jin Y; Samaranayake LP; Samaranayake Y; Yip HK
    Arch Oral Biol; 2004 Oct; 49(10):789-98. PubMed ID: 15308423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin.
    Messier C; Epifano F; Genovese S; Grenier D
    Phytomedicine; 2011 Mar; 18(5):380-3. PubMed ID: 21353508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of Candida albicans with periodontal ligament fibroblasts limits biofilm formation over elastomer silicone disks.
    Alsalleeh F; Williams S; Jaber H
    Arch Oral Biol; 2016 Mar; 63():47-52. PubMed ID: 26679201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of serum and surface characteristics on Candida albicans biofilm formation.
    Frade JP; Arthington-Skaggs BA
    Mycoses; 2011 Jul; 54(4):e154-62. PubMed ID: 20337936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diphenyl diselenide (PhSe)2 inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability.
    Rosseti IB; Rocha JB; Costa MS
    J Trace Elem Med Biol; 2015 Jan; 29():289-95. PubMed ID: 25189816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induction of Candida albicans biofilm formation on silver-coated vascular grafts.
    Tammer I; Reuner J; Hartig R; Geginat G
    J Antimicrob Chemother; 2014 May; 69(5):1282-5. PubMed ID: 24448486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Anti-candidal activity of clinical Pseudomonas aeruginosa strains and in vitro inhibition of Candida biofilm formation].
    Keçeli Özcan S; Dündar D; Sönmez Tamer G
    Mikrobiyol Bul; 2012 Jan; 46(1):39-46. PubMed ID: 22399170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions.
    Hill D; Rose B; Pajkos A; Robinson M; Bye P; Bell S; Elkins M; Thompson B; Macleod C; Aaron SD; Harbour C
    J Clin Microbiol; 2005 Oct; 43(10):5085-90. PubMed ID: 16207967
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Janus MM; Crielaard W; Volgenant CM; van der Veen MH; Brandt BW; Krom BP
    J Oral Microbiol; 2017; 9(1):1270613. PubMed ID: 28326152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of combined growth media for in vitro cultivation of oropharyngeal biofilms on prosthetic silicone.
    Leonhard M; Zatorska B; Moser D; Tan Y; Schneider-Stickler B
    J Mater Sci Mater Med; 2018 Apr; 29(4):45. PubMed ID: 29633010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibitory effects of oral Actinomyces on the proliferation, virulence and biofilm formation of Candida albicans.
    Guo Y; Wei C; Liu C; Li D; Sun J; Huang H; Zhou H
    Arch Oral Biol; 2015 Sep; 60(9):1368-74. PubMed ID: 26143096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces.
    Li L; Finnegan MB; Özkan S; Kim Y; Lillehoj PB; Ho CM; Lux R; Mito R; Loewy Z; Shi W
    Mol Oral Microbiol; 2010 Dec; 25(6):384-90. PubMed ID: 21040512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.