BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 15992764)

  • 1. Specific distribution of VEGF-F in Viperinae snake venoms: isolation and characterization of a VGEF-F from the venom of Daboia russelli siamensis.
    Tokunaga Y; Yamazaki Y; Morita T
    Arch Biochem Biophys; 2005 Jul; 439(2):241-7. PubMed ID: 15992764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the heparin-binding region of snake venom vascular endothelial growth factor (VEGF-F) and its blocking of VEGF-A165.
    Yamazaki Y; Tokunaga Y; Takani K; Morita T
    Biochemistry; 2005 Jun; 44(24):8858-64. PubMed ID: 15952792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snake venom vascular endothelial growth factors (VEGFs) exhibit potent activity through their specific recognition of KDR (VEGF receptor 2).
    Yamazaki Y; Takani K; Atoda H; Morita T
    J Biol Chem; 2003 Dec; 278(52):51985-8. PubMed ID: 14600159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Venom peptide analysis of Vipera ammodytes meridionalis (Viperinae) and Bothrops jararacussu (Crotalinae) demonstrates subfamily-specificity of the peptidome in the family Viperidae.
    Munawar A; Trusch M; Georgieva D; Spencer P; Frochaux V; Harder S; Arni RK; Duhalov D; Genov N; Schlüter H; Betzel C
    Mol Biosyst; 2011 Dec; 7(12):3298-307. PubMed ID: 21959992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VEGF-A and VEGF-F evoke distinct changes in vascular ultrastructure.
    Matsunaga Y; Yamazaki Y; Suzuki H; Morita T
    Biochem Biophys Res Commun; 2009 Feb; 379(4):872-5. PubMed ID: 19126400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular endothelial growth factor VEGF-like heparin-binding protein from the venom of Vipera aspis aspis (Aspic viper).
    Komori Y; Nikai T; Taniguchi K; Masuda K; Sugihara H
    Biochemistry; 1999 Sep; 38(36):11796-803. PubMed ID: 10512636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Snake venom VEGF Vammin induces a highly efficient angiogenic response in skeletal muscle via VEGFR-2/NRP specific signaling.
    Toivanen PI; Nieminen T; Laakkonen JP; Heikura T; Kaikkonen MU; Ylä-Herttuala S
    Sci Rep; 2017 Jul; 7(1):5525. PubMed ID: 28717175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of the venom proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis.
    Georgieva D; Risch M; Kardas A; Buck F; von Bergen M; Betzel C
    J Proteome Res; 2008 Mar; 7(3):866-86. PubMed ID: 18257516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of a novel vascular endothelial growth factor (VEGF) with no affinity to heparin in Gloydius tsushimaensis venom.
    Nakamura H; Murakami T; Imamura T; Toriba M; Chijiwa T; Ohno M; Oda-Ueda N
    Toxicon; 2014 Aug; 86():107-15. PubMed ID: 24857790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-terminal heparin-binding peptide of snake venom VEGF specifically blocks VEGF-stimulated endothelial cell proliferation.
    Yamazaki Y; Tokunaga Y; Takani K; Morita T
    Pathophysiol Haemost Thromb; 2005; 34(4-5):197-9. PubMed ID: 16707927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Snake venomics of the Siamese Russell's viper (Daboia russelli siamensis) -- relation to pharmacological activities.
    Risch M; Georgieva D; von Bergen M; Jehmlich N; Genov N; Arni RK; Betzel C
    J Proteomics; 2009 Mar; 72(2):256-69. PubMed ID: 19457351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A heat stable protein toxin (drCT-I) from the Indian Viper (Daboia russelli russelli) venom having antiproliferative, cytotoxic and apoptotic activities.
    Gomes A; Choudhury SR; Saha A; Mishra R; Giri B; Biswas AK; Debnath A; Gomes A
    Toxicon; 2007 Jan; 49(1):46-56. PubMed ID: 17055549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and pharmacological comparison of daboiatoxin from Daboia russelli siamensis with viperotoxin F and vipoxin from other vipers.
    Gopalan G; Thwin MM; Gopalakrishnakone P; Swaminathan K
    Acta Crystallogr D Biol Crystallogr; 2007 Jun; 63(Pt 6):722-9. PubMed ID: 17505111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequences and structural organization of phospholipase A2 genes from Vipera aspis aspis, V. aspis zinnikeri and Vipera berus berus venom. Identification of the origin of a new viper population based on ammodytin I1 heterogeneity.
    Guillemin I; Bouchier C; Garrigues T; Wisner A; Choumet V
    Eur J Biochem; 2003 Jul; 270(13):2697-706. PubMed ID: 12823540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of a growth factor-like which increases capillary permeability from Vipera lebetina venom.
    Gasmi A; Abidi F; Srairi N; Oijatayer A; Karoui H; Elayeb M
    Biochem Biophys Res Commun; 2000 Feb; 268(1):69-72. PubMed ID: 10652214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine-rich venom proteins from the snakes of Viperinae subfamily - molecular cloning and phylogenetic relationship.
    Ramazanova AS; Starkov VG; Osipov AV; Ziganshin RH; Filkin SY; Tsetlin VI; Utkin YN
    Toxicon; 2009 Jan; 53(1):162-8. PubMed ID: 19041663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cDNA cloning, structural, and functional analyses of venom phospholipases A₂ and a Kunitz-type protease inhibitor from steppe viper Vipera ursinii renardi.
    Tsai IH; Wang YM; Cheng AC; Starkov V; Osipov A; Nikitin I; Makarova Y; Ziganshin R; Utkin Y
    Toxicon; 2011 Feb; 57(2):332-41. PubMed ID: 21185324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutralization of Vipera and Macrovipera venoms by two experimental polyvalent antisera: a study of paraspecificity.
    Archundia IG; de Roodt AR; Ramos-Cerrillo B; Chippaux JP; Olguín-Pérez L; Alagón A; Stock RP
    Toxicon; 2011 Jun; 57(7-8):1049-56. PubMed ID: 21530569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel svVEGF isoforms from Macrovipera lebetina venom interact with neuropilins.
    Aloui Z; Hoos S; Geretti E; Kharmachi H; Haumont PY; Mejdoub H; Klagsbrun M; England P; Gasmi A
    Biochem Biophys Res Commun; 2009 Nov; 389(1):10-5. PubMed ID: 19695228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling of vascular endothelial growth factor with nitric oxide as a mechanism for diabetic vasculopathy.
    Nakagawa T; Sato W; Sautin YY; Glushakova O; Croker B; Atkinson MA; Tisher CC; Johnson RJ
    J Am Soc Nephrol; 2006 Mar; 17(3):736-45. PubMed ID: 16436494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.