These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 15992770)
1. Expression of the C-terminal domain of novel human SR-A1 protein: interaction with the CTD domain of RNA polymerase II. Katsarou ME; Papakyriakou A; Katsaros N; Scorilas A Biochem Biophys Res Commun; 2005 Aug; 334(1):61-8. PubMed ID: 15992770 [TBL] [Abstract][Full Text] [Related]
2. A novel SR-related protein specifically interacts with the carboxy-terminal domain (CTD) of RNA polymerase II through a conserved interaction domain. Tanner S; Stagljar I; Georgiev O; Schaffner W; Bourquin JP Biol Chem; 1997 Jun; 378(6):565-71. PubMed ID: 9224939 [TBL] [Abstract][Full Text] [Related]
3. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Yuryev A; Patturajan M; Litingtung Y; Joshi RV; Gentile C; Gebara M; Corden JL Proc Natl Acad Sci U S A; 1996 Jul; 93(14):6975-80. PubMed ID: 8692929 [TBL] [Abstract][Full Text] [Related]
4. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II. Bourquin JP; Stagljar I; Meier P; Moosmann P; Silke J; Baechi T; Georgiev O; Schaffner W Nucleic Acids Res; 1997 Jun; 25(11):2055-61. PubMed ID: 9153302 [TBL] [Abstract][Full Text] [Related]
5. Cloning of a gene (SR-A1), encoding for a new member of the human Ser/Arg-rich family of pre-mRNA splicing factors: overexpression in aggressive ovarian cancer. Scorilas A; Kyriakopoulou L; Katsaros D; Diamandis EP Br J Cancer; 2001 Jul; 85(2):190-8. PubMed ID: 11461075 [TBL] [Abstract][Full Text] [Related]
6. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors. Meinhart A; Cramer P Nature; 2004 Jul; 430(6996):223-6. PubMed ID: 15241417 [TBL] [Abstract][Full Text] [Related]
7. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments. Bienkiewicz EA; Moon Woody A; Woody RW J Mol Biol; 2000 Mar; 297(1):119-33. PubMed ID: 10704311 [TBL] [Abstract][Full Text] [Related]
8. Role of the C-terminal domain of RNA polymerase II in expression of small nuclear RNA genes. Egloff S; Murphy S Biochem Soc Trans; 2008 Jun; 36(Pt 3):537-9. PubMed ID: 18482001 [TBL] [Abstract][Full Text] [Related]
9. Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases. Koiwa H; Hausmann S; Bang WY; Ueda A; Kondo N; Hiraguri A; Fukuhara T; Bahk JD; Yun DJ; Bressan RA; Hasegawa PM; Shuman S Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14539-44. PubMed ID: 15388846 [TBL] [Abstract][Full Text] [Related]
10. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain. Pineda G; Shen Z; de Albuquerque CP; Reynoso E; Chen J; Tu CC; Tang W; Briggs S; Zhou H; Wang JY BMC Res Notes; 2015 Oct; 8():616. PubMed ID: 26515650 [TBL] [Abstract][Full Text] [Related]
11. The repetitive C-terminal domain of RNA polymerase II: multiple conformational states drive the transcription cycle. Lin PS; Tremeau-Bravard A; Dahmus ME Chem Rec; 2003; 3(4):235-45. PubMed ID: 14595832 [TBL] [Abstract][Full Text] [Related]
12. Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"? Seipel K; Georgiev O; Gerber HP; Schaffner W Mol Reprod Dev; 1994 Oct; 39(2):215-25. PubMed ID: 7826625 [TBL] [Abstract][Full Text] [Related]
13. AtCyp59 is a multidomain cyclophilin from Arabidopsis thaliana that interacts with SR proteins and the C-terminal domain of the RNA polymerase II. Gullerova M; Barta A; Lorkovic ZJ RNA; 2006 Apr; 12(4):631-43. PubMed ID: 16497658 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Xiang K; Nagaike T; Xiang S; Kilic T; Beh MM; Manley JL; Tong L Nature; 2010 Oct; 467(7316):729-33. PubMed ID: 20861839 [TBL] [Abstract][Full Text] [Related]
15. A structural perspective of CTD function. Meinhart A; Kamenski T; Hoeppner S; Baumli S; Cramer P Genes Dev; 2005 Jun; 19(12):1401-15. PubMed ID: 15964991 [TBL] [Abstract][Full Text] [Related]
16. Key features of the interaction between Pcf11 CID and RNA polymerase II CTD. Noble CG; Hollingworth D; Martin SR; Ennis-Adeniran V; Smerdon SJ; Kelly G; Taylor IA; Ramos A Nat Struct Mol Biol; 2005 Feb; 12(2):144-51. PubMed ID: 15665873 [TBL] [Abstract][Full Text] [Related]
17. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. de la Mata M; Kornblihtt AR Nat Struct Mol Biol; 2006 Nov; 13(11):973-80. PubMed ID: 17028590 [TBL] [Abstract][Full Text] [Related]
18. Specific interaction of the transcription elongation regulator TCERG1 with RNA polymerase II requires simultaneous phosphorylation at Ser2, Ser5, and Ser7 within the carboxyl-terminal domain repeat. Liu J; Fan S; Lee CJ; Greenleaf AL; Zhou P J Biol Chem; 2013 Apr; 288(15):10890-901. PubMed ID: 23436654 [TBL] [Abstract][Full Text] [Related]
19. Structural basis for phosphoserine-proline recognition by group IV WW domains. Verdecia MA; Bowman ME; Lu KP; Hunter T; Noel JP Nat Struct Biol; 2000 Aug; 7(8):639-43. PubMed ID: 10932246 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3'-end cleavage. Rosonina E; Blencowe BJ RNA; 2004 Apr; 10(4):581-9. PubMed ID: 15037767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]