These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15992803)

  • 21. Chondrocytes from different zones exhibit characteristic differences in high density culture.
    Hu JC; Athanasiou KA
    Connect Tissue Res; 2006; 47(3):133-40. PubMed ID: 16753806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial dynamics in chondrocytes and their connection to the mechanical properties of the cytoplasm.
    Bomzon Z; Knight MM; Bader DL; Kimmel E
    J Biomech Eng; 2006 Oct; 128(5):674-9. PubMed ID: 16995753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of TGF-beta1 and IGF-I on the compressibility, biomechanics, and strain-dependent recovery behavior of single chondrocytes.
    Koay EJ; Ofek G; Athanasiou KA
    J Biomech; 2008; 41(5):1044-52. PubMed ID: 18222457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localization of the potential zonal marker clusterin in native cartilage and in tissue-engineered constructs.
    Malda J; ten Hoope W; Schuurman W; van Osch GJ; van Weeren PR; Dhert WJ
    Tissue Eng Part A; 2010 Mar; 16(3):897-904. PubMed ID: 19814590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the mechanical behavior of chondrocytes in unconfined compression tests for cyclic loading.
    Wu JZ; Herzog W
    J Biomech; 2006; 39(4):603-16. PubMed ID: 16439231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deformation properties of articular chondrocytes: a critique of three separate techniques.
    Bader DL; Ohashi T; Knight MM; Lee DA; Sato M
    Biorheology; 2002; 39(1-2):69-78. PubMed ID: 12082269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of TGF-beta1 and IGF-I on the biomechanics and cytoskeleton of single chondrocytes.
    Leipzig ND; Eleswarapu SV; Athanasiou KA
    Osteoarthritis Cartilage; 2006 Dec; 14(12):1227-36. PubMed ID: 16824771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maturational differences in superficial and deep zone articular chondrocytes.
    Hidaka C; Cheng C; Alexandre D; Bhargava M; Torzilli PA
    Cell Tissue Res; 2006 Jan; 323(1):127-35. PubMed ID: 16133144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests.
    Sergerie K; Lacoursière MO; Lévesque M; Villemure I
    J Biomech; 2009 Mar; 42(4):510-6. PubMed ID: 19185303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage.
    Preiss-Bloom O; Mizrahi J; Elisseeff J; Seliktar D
    Artif Organs; 2009 Apr; 33(4):318-27. PubMed ID: 19335408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of matrix tension-compression nonlinearity and fixed negative charges on chondrocyte responses in cartilage.
    Likhitpanichkul M; Guo XE; Mow VC
    Mol Cell Biomech; 2005 Dec; 2(4):191-204. PubMed ID: 16705865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compressive properties of cartilage-like tissues repaired in vivo with scaffold-free, tissue engineered constructs.
    Katakai D; Imura M; Ando W; Tateishi K; Yoshikawa H; Nakamura N; Fujie H
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):110-6. PubMed ID: 18990475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical properties of hip cartilage in experimental animal models.
    Athanasiou KA; Agarwal A; Muffoletto A; Dzida FJ; Constantinides G; Clem M
    Clin Orthop Relat Res; 1995 Jul; (316):254-66. PubMed ID: 7634715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct measurement of the Poisson's ratio of human patella cartilage in tension.
    Elliott DM; Narmoneva DA; Setton LA
    J Biomech Eng; 2002 Apr; 124(2):223-8. PubMed ID: 12002132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chondrocyte cells respond mechanically to compressive loads.
    Freeman PM; Natarajan RN; Kimura JH; Andriacchi TP
    J Orthop Res; 1994 May; 12(3):311-20. PubMed ID: 8207584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneous nanomechanical properties of superficial and zonal regions of articular cartilage of the rabbit proximal radius condyle by atomic force microscopy.
    Tomkoria S; Patel RV; Mao JJ
    Med Eng Phys; 2004 Dec; 26(10):815-22. PubMed ID: 15567698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytoindentation for obtaining cell biomechanical properties.
    Shin D; Athanasiou K
    J Orthop Res; 1999 Nov; 17(6):880-90. PubMed ID: 10632455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zonal gene expression of chondrocytes in osteoarthritic cartilage.
    Fukui N; Miyamoto Y; Nakajima M; Ikeda Y; Hikita A; Furukawa H; Mitomi H; Tanaka N; Katsuragawa Y; Yamamoto S; Sawabe M; Juji T; Mori T; Suzuki R; Ikegawa S
    Arthritis Rheum; 2008 Dec; 58(12):3843-53. PubMed ID: 19035477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.