These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 15993157)

  • 1. Sorption of pentachlorophenol on pine bark.
    Brás I; Lemos L; Alves A; Pereira MF
    Chemosphere; 2005 Aug; 60(8):1095-102. PubMed ID: 15993157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Fe(II) ions from aqueous solution by Calabrian pine bark wastes.
    Acemioğlu B
    Bioresour Technol; 2004 May; 93(1):99-102. PubMed ID: 14987727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D; Pittman CU; Bricka M; Smith F; Yancey B; Mohammad J; Steele PH; Alexandre-Franco MF; Gómez-Serrano V; Gong H
    J Colloid Interface Sci; 2007 Jun; 310(1):57-73. PubMed ID: 17331527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pentachlorophenol sorption by variable-charge soils in methanol-water mixture: pH effect at the low solvent volume fraction.
    Hyun S; Lee LS
    Chemosphere; 2008 Jan; 70(3):503-10. PubMed ID: 17662340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent.
    Deng S; Ma R; Yu Q; Huang J; Yu G
    J Hazard Mater; 2009 Jun; 165(1-3):408-14. PubMed ID: 19013710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Pb(II) from wastewater using wheat bran.
    Bulut Y; Baysal Z
    J Environ Manage; 2006 Jan; 78(2):107-13. PubMed ID: 16046250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of 2,4,6-trinitrotoluene and heavy metals from industrial waste water by using the low cost adsorbent pine bark in a batch experiment.
    Nehrenheim E; Odlare M; Allard B
    Water Sci Technol; 2011; 64(10):2052-8. PubMed ID: 22105128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulataneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma.
    Qu GZ; Lu N; Li J; Wu Y; Li GF; Li D
    J Hazard Mater; 2009 Dec; 172(1):472-8. PubMed ID: 19656621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations.
    Akhtar M; Bhanger MI; Iqbal S; Hasany SM
    J Hazard Mater; 2006 Jan; 128(1):44-52. PubMed ID: 16126338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark.
    Sarin V; Singh TS; Pant KK
    Bioresour Technol; 2006 Nov; 97(16):1986-93. PubMed ID: 16311033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark.
    Ghodbane I; Nouri L; Hamdaoui O; Chiha M
    J Hazard Mater; 2008 Mar; 152(1):148-58. PubMed ID: 17689182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of dissolved organic carbon on sorption of heavy metals on urea-treated pine bark.
    Khokhotva O; Waara S
    J Hazard Mater; 2010 Jan; 173(1-3):689-96. PubMed ID: 19836133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The removal of heavy metals in urban runoff by sorption on mulch.
    Jang A; Seo Y; Bishop PL
    Environ Pollut; 2005 Jan; 133(1):117-27. PubMed ID: 15327862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal retention on pine bark and blast furnace slag--on-site experiment for treatment of low strength landfill leachate.
    Nehrenheim E; Waara S; Johansson Westholm L
    Bioresour Technol; 2008 Mar; 99(5):998-1005. PubMed ID: 17462882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scavenging of Ni(II) metal ions by adsorption on PAC and babhul bark.
    Patil SJ; Bhole AG; Natarajan GS
    J Environ Sci Eng; 2006 Jul; 48(3):203-8. PubMed ID: 17915785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of chlorophenols from groundwater by chitosan sorption.
    Zheng S; Yang Z; Jo DH; Park YH
    Water Res; 2004 May; 38(9):2314-21. PubMed ID: 15142792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of PCP-Na from aqueous systems using monodispersed pompon-like magnetic nanoparticles as adsorbents.
    Liu Y; Yu H; Zhan S; Li S; Yang H; Liu B
    Water Sci Technol; 2013; 68(12):2704-11. PubMed ID: 24355861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic sorption onto laterite iron concretions: temperature effect.
    Partey F; Norman D; Ndur S; Nartey R
    J Colloid Interface Sci; 2008 May; 321(2):493-500. PubMed ID: 18346752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent--Kinetics and isotherm analysis.
    Radhika M; Palanivelu K
    J Hazard Mater; 2006 Nov; 138(1):116-24. PubMed ID: 16806675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13X and bentonite.
    Purna Chandra Rao G; Satyaveni S; Ramesh A; Seshaiah K; Murthy KS; Choudary NV
    J Environ Manage; 2006 Nov; 81(3):265-72. PubMed ID: 16580120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.