These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 15993460)
1. Studies of hexavalent chromium attenuation in redox variable soils obtained from a sandy to sub-wetland groundwater environment. Hellerich LA; Nikolaidis NP Water Res; 2005 Aug; 39(13):2851-68. PubMed ID: 15993460 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the potential for the natural attenuation of hexavalent chromium within a sub-wetland ground water. Hellerich LA; Nikolaidis NP; Dobbs GM J Environ Manage; 2008 Sep; 88(4):1513-24. PubMed ID: 17900791 [TBL] [Abstract][Full Text] [Related]
3. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. Hu J; Chen C; Zhu X; Wang X J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001 [TBL] [Abstract][Full Text] [Related]
4. Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties. Xiao W; Zhang Y; Li T; Chen B; Wang H; He Z; Yang X J Environ Qual; 2012; 41(5):1452-8. PubMed ID: 23099936 [TBL] [Abstract][Full Text] [Related]
5. Removal of Cr(VI) from contaminated soil by electrokinetic remediation. Sawada A; Mori K; Tanaka S; Fukushima M; Tatsumi K Waste Manag; 2004; 24(5):483-90. PubMed ID: 15120432 [TBL] [Abstract][Full Text] [Related]
6. Modelling of the Cr(VI) transport in typical soils of the North of Portugal. Fonseca B; Teixeira A; Figueiredo H; Tavares T J Hazard Mater; 2009 Aug; 167(1-3):756-62. PubMed ID: 19216027 [TBL] [Abstract][Full Text] [Related]
7. Rates of hexavalent chromium reduction in anoxic estuarine sediments: pH effects and the role of acid volatile sulfides. Graham AM; Bouwer EJ Environ Sci Technol; 2010 Jan; 44(1):136-42. PubMed ID: 20039744 [TBL] [Abstract][Full Text] [Related]
8. Sorption and transport modeling of hexavalent chromium on soil media. Khan AA; Muthukrishnan M; Guha BK J Hazard Mater; 2010 Feb; 174(1-3):444-54. PubMed ID: 19879041 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China. Dong D; Zhao X; Hua X; Liu J; Gao M J Hazard Mater; 2009 Mar; 162(2-3):1261-8. PubMed ID: 18650011 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China. Zhao X; Dong D; Hua X; Dong S J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of hexavalent chromium adsorption by persimmon tannin gel. Nakajima A; Baba Y Water Res; 2004 Jul; 38(12):2859-64. PubMed ID: 15223280 [TBL] [Abstract][Full Text] [Related]
12. Sorption studies of mixed chromium and chlorinated ethenes at the field and laboratory scales. Hellerich LA; Nikolaidis NP J Environ Manage; 2005 Apr; 75(1):77-88. PubMed ID: 15748805 [TBL] [Abstract][Full Text] [Related]
13. Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Park D; Lim SR; Yun YS; Park JM Chemosphere; 2007 Dec; 70(2):298-305. PubMed ID: 17644158 [TBL] [Abstract][Full Text] [Related]
14. Soil humic acids may favour the persistence of hexavalent chromium in soil. Leita L; Margon A; Pastrello A; Arcon I; Contin M; Mosetti D Environ Pollut; 2009 Jun; 157(6):1862-6. PubMed ID: 19231051 [TBL] [Abstract][Full Text] [Related]
15. Development and validation of a model of bio-barriers for remediation of Cr(VI) contaminated aquifers using laboratory column experiments. Shashidhar T; Bhallamudi SM; Philip L J Hazard Mater; 2007 Jul; 145(3):437-52. PubMed ID: 17161527 [TBL] [Abstract][Full Text] [Related]
16. A study on the reduction of hexavalent chromium in aqueous solutions by vinasse. Altundogan HS; Ozer A; Tümen F Environ Technol; 2004 Nov; 25(11):1257-63. PubMed ID: 15617440 [TBL] [Abstract][Full Text] [Related]
17. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH. Gheju M; Iovi A; Balcu I J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of hexavalent chromium reduction by scrap iron. Gheju M; Iovi A J Hazard Mater; 2006 Jul; 135(1-3):66-73. PubMed ID: 16386842 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg-Al-CO(3) hydrotalcite. Lazaridis NK; Asouhidou DD Water Res; 2003 Jul; 37(12):2875-82. PubMed ID: 12767290 [TBL] [Abstract][Full Text] [Related]
20. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron. Rivero-Huguet M; Marshall WD Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]